Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions
Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate dat...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2024-09, Vol.33 (9), p.e13884-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e13884 |
container_title | Global ecology and biogeography |
container_volume | 33 |
creator | Klinges, David H. Baecher, J. Alex Lembrechts, Jonas J. Maclean, Ilya M. D. Lenoir, Jonathan Greiser, Caroline Ashcroft, Michael Evans, Luke J. Kearney, Michael R. Aalto, Juha Barrio, Isabel C. De Frenne, Pieter Guillemot, Joannès Hylander, Kristoffer Jucker, Tommaso Kopecký, Martin Luoto, Miska Macek, Martin Nijs, Ivan Urban, Josef Brink, Liesbeth Vangansbeke, Pieter Von Oppen, Jonathan Wild, Jan Boike, Julia Canessa, Rafaella Nosetto, Marcelo Rubtsov, Alexey Sallo‐Bravo, Jhonatan Scheffers, Brett R. |
description | Aim
The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.
Location
Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).
Time Period
1960–2018.
Major Taxa Studied
Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.
Methods
We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.
Results
For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.
Main Conclusions
We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems. |
doi_str_mv | 10.1111/geb.13884 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_131230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092968653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</originalsourceid><addsrcrecordid>eNp1kT9PwzAQxSMEEuXPwDeIxMTQco4T12ErVaFIRTCAxIRlO5fiKq2D3RT67XEIKmLAy53ufu-k5xdFZwQGJLzLOaoBoZyne1GPpIz1eUL5_q5PXg6jI-8XAJClGetFr4_OfpqlrOKl0c7qKvRrvIrv7cas5rHCrV0Vsa_l2tg1LmvrAurQ26oJk1VslrWzG_QxalvZudFhXTssjG7X_iQ6KGXl8fSnHkfPN5On8bQ_e7i9G49mfZ0wSPulZEyiLnKEIZSQq2GGqpSFSphWGjlInWRKAuVSUUiLknNCWlCSXLEyp8fRoLvrP7BulKhd8OG2wkojfNUo6doiPApCSUIhCC46wZus_tDT0Uy0M0gZBQbDDQnseccGq-8N-rVY2Matgh9BIU9yxllGfy-Gb_TeYbk7S0C02YiQjfjOJrCXHfthKtz-D4rbyXWn-AKtI5MK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092968653</pqid></control><display><type>article</type><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><source>Access via Wiley Online Library</source><creator>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R.</creator><creatorcontrib>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Aim
The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.
Location
Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).
Time Period
1960–2018.
Major Taxa Studied
Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.
Methods
We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.
Results
For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.
Main Conclusions
We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</description><identifier>ISSN: 1466-822X</identifier><identifier>ISSN: 1466-8238</identifier><identifier>EISSN: 1466-8238</identifier><identifier>EISSN: 1466-822X</identifier><identifier>DOI: 10.1111/geb.13884</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aquatic insects ; Biogeography ; biophysical ecology ; Case studies ; Climate ; climate change ; Climate prediction ; Climatic data ; Ecological models ; Ecology ; ecophysiology ; Ekologi ; Environmental Sciences ; Fysisk geografi ; Grain size ; macroclimate ; Microclimate ; Mosquitoes ; nonlinearity ; Organisms ; Physical Geography ; Proximity ; resolution ; Soil temperature ; Spatial discrimination ; Spatial resolution ; Spatiotemporal data ; species distribution model ; Temporal resolution</subject><ispartof>Global ecology and biogeography, 2024-09, Vol.33 (9), p.e13884-n/a</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>Copyright © 2024 John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</cites><orcidid>0000-0002-8613-0943 ; 0000-0002-8120-5248 ; 0000-0003-4385-7656 ; 0000-0002-5609-5921 ; 0000-0002-6356-2858 ; 0000-0002-1933-0750 ; 0000-0003-2157-5965 ; 0000-0001-9007-4959 ; 0000-0003-0638-9582 ; 0000-0002-7900-9379 ; 0000-0001-8030-9136 ; 0000-0002-9428-490X ; 0000-0002-1215-2648 ; 0000-0002-3349-8744 ; 0000-0002-6618-4733 ; 0000-0001-6819-4911 ; 0000-0002-9663-4344 ; 0000-0003-0247-5758 ; 0000-0003-0313-8147 ; 0000-0002-5875-2112 ; 0000-0003-3007-4070 ; 0000-0003-1730-947X ; 0000-0001-6346-2964 ; 0000-0001-6203-5143 ; 0000-0002-6979-9880 ; 0000-0003-2423-3821 ; 0000-0002-1018-9316 ; 0000-0003-4023-4402 ; 0000-0002-0751-6312 ; 0000-0003-3111-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04630607$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131230$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klinges, David H.</creatorcontrib><creatorcontrib>Baecher, J. Alex</creatorcontrib><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Maclean, Ilya M. D.</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Greiser, Caroline</creatorcontrib><creatorcontrib>Ashcroft, Michael</creatorcontrib><creatorcontrib>Evans, Luke J.</creatorcontrib><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Aalto, Juha</creatorcontrib><creatorcontrib>Barrio, Isabel C.</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>Guillemot, Joannès</creatorcontrib><creatorcontrib>Hylander, Kristoffer</creatorcontrib><creatorcontrib>Jucker, Tommaso</creatorcontrib><creatorcontrib>Kopecký, Martin</creatorcontrib><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Macek, Martin</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Urban, Josef</creatorcontrib><creatorcontrib>Brink, Liesbeth</creatorcontrib><creatorcontrib>Vangansbeke, Pieter</creatorcontrib><creatorcontrib>Von Oppen, Jonathan</creatorcontrib><creatorcontrib>Wild, Jan</creatorcontrib><creatorcontrib>Boike, Julia</creatorcontrib><creatorcontrib>Canessa, Rafaella</creatorcontrib><creatorcontrib>Nosetto, Marcelo</creatorcontrib><creatorcontrib>Rubtsov, Alexey</creatorcontrib><creatorcontrib>Sallo‐Bravo, Jhonatan</creatorcontrib><creatorcontrib>Scheffers, Brett R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><title>Global ecology and biogeography</title><description>Aim
The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.
Location
Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).
Time Period
1960–2018.
Major Taxa Studied
Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.
Methods
We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.
Results
For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.
Main Conclusions
We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</description><subject>Aquatic insects</subject><subject>Biogeography</subject><subject>biophysical ecology</subject><subject>Case studies</subject><subject>Climate</subject><subject>climate change</subject><subject>Climate prediction</subject><subject>Climatic data</subject><subject>Ecological models</subject><subject>Ecology</subject><subject>ecophysiology</subject><subject>Ekologi</subject><subject>Environmental Sciences</subject><subject>Fysisk geografi</subject><subject>Grain size</subject><subject>macroclimate</subject><subject>Microclimate</subject><subject>Mosquitoes</subject><subject>nonlinearity</subject><subject>Organisms</subject><subject>Physical Geography</subject><subject>Proximity</subject><subject>resolution</subject><subject>Soil temperature</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spatiotemporal data</subject><subject>species distribution model</subject><subject>Temporal resolution</subject><issn>1466-822X</issn><issn>1466-8238</issn><issn>1466-8238</issn><issn>1466-822X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kT9PwzAQxSMEEuXPwDeIxMTQco4T12ErVaFIRTCAxIRlO5fiKq2D3RT67XEIKmLAy53ufu-k5xdFZwQGJLzLOaoBoZyne1GPpIz1eUL5_q5PXg6jI-8XAJClGetFr4_OfpqlrOKl0c7qKvRrvIrv7cas5rHCrV0Vsa_l2tg1LmvrAurQ26oJk1VslrWzG_QxalvZudFhXTssjG7X_iQ6KGXl8fSnHkfPN5On8bQ_e7i9G49mfZ0wSPulZEyiLnKEIZSQq2GGqpSFSphWGjlInWRKAuVSUUiLknNCWlCSXLEyp8fRoLvrP7BulKhd8OG2wkojfNUo6doiPApCSUIhCC46wZus_tDT0Uy0M0gZBQbDDQnseccGq-8N-rVY2Matgh9BIU9yxllGfy-Gb_TeYbk7S0C02YiQjfjOJrCXHfthKtz-D4rbyXWn-AKtI5MK</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Klinges, David H.</creator><creator>Baecher, J. Alex</creator><creator>Lembrechts, Jonas J.</creator><creator>Maclean, Ilya M. D.</creator><creator>Lenoir, Jonathan</creator><creator>Greiser, Caroline</creator><creator>Ashcroft, Michael</creator><creator>Evans, Luke J.</creator><creator>Kearney, Michael R.</creator><creator>Aalto, Juha</creator><creator>Barrio, Isabel C.</creator><creator>De Frenne, Pieter</creator><creator>Guillemot, Joannès</creator><creator>Hylander, Kristoffer</creator><creator>Jucker, Tommaso</creator><creator>Kopecký, Martin</creator><creator>Luoto, Miska</creator><creator>Macek, Martin</creator><creator>Nijs, Ivan</creator><creator>Urban, Josef</creator><creator>Brink, Liesbeth</creator><creator>Vangansbeke, Pieter</creator><creator>Von Oppen, Jonathan</creator><creator>Wild, Jan</creator><creator>Boike, Julia</creator><creator>Canessa, Rafaella</creator><creator>Nosetto, Marcelo</creator><creator>Rubtsov, Alexey</creator><creator>Sallo‐Bravo, Jhonatan</creator><creator>Scheffers, Brett R.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-8613-0943</orcidid><orcidid>https://orcid.org/0000-0002-8120-5248</orcidid><orcidid>https://orcid.org/0000-0003-4385-7656</orcidid><orcidid>https://orcid.org/0000-0002-5609-5921</orcidid><orcidid>https://orcid.org/0000-0002-6356-2858</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-2157-5965</orcidid><orcidid>https://orcid.org/0000-0001-9007-4959</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-7900-9379</orcidid><orcidid>https://orcid.org/0000-0001-8030-9136</orcidid><orcidid>https://orcid.org/0000-0002-9428-490X</orcidid><orcidid>https://orcid.org/0000-0002-1215-2648</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid><orcidid>https://orcid.org/0000-0002-6618-4733</orcidid><orcidid>https://orcid.org/0000-0001-6819-4911</orcidid><orcidid>https://orcid.org/0000-0002-9663-4344</orcidid><orcidid>https://orcid.org/0000-0003-0247-5758</orcidid><orcidid>https://orcid.org/0000-0003-0313-8147</orcidid><orcidid>https://orcid.org/0000-0002-5875-2112</orcidid><orcidid>https://orcid.org/0000-0003-3007-4070</orcidid><orcidid>https://orcid.org/0000-0003-1730-947X</orcidid><orcidid>https://orcid.org/0000-0001-6346-2964</orcidid><orcidid>https://orcid.org/0000-0001-6203-5143</orcidid><orcidid>https://orcid.org/0000-0002-6979-9880</orcidid><orcidid>https://orcid.org/0000-0003-2423-3821</orcidid><orcidid>https://orcid.org/0000-0002-1018-9316</orcidid><orcidid>https://orcid.org/0000-0003-4023-4402</orcidid><orcidid>https://orcid.org/0000-0002-0751-6312</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid></search><sort><creationdate>202409</creationdate><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><author>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic insects</topic><topic>Biogeography</topic><topic>biophysical ecology</topic><topic>Case studies</topic><topic>Climate</topic><topic>climate change</topic><topic>Climate prediction</topic><topic>Climatic data</topic><topic>Ecological models</topic><topic>Ecology</topic><topic>ecophysiology</topic><topic>Ekologi</topic><topic>Environmental Sciences</topic><topic>Fysisk geografi</topic><topic>Grain size</topic><topic>macroclimate</topic><topic>Microclimate</topic><topic>Mosquitoes</topic><topic>nonlinearity</topic><topic>Organisms</topic><topic>Physical Geography</topic><topic>Proximity</topic><topic>resolution</topic><topic>Soil temperature</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spatiotemporal data</topic><topic>species distribution model</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klinges, David H.</creatorcontrib><creatorcontrib>Baecher, J. Alex</creatorcontrib><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Maclean, Ilya M. D.</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Greiser, Caroline</creatorcontrib><creatorcontrib>Ashcroft, Michael</creatorcontrib><creatorcontrib>Evans, Luke J.</creatorcontrib><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Aalto, Juha</creatorcontrib><creatorcontrib>Barrio, Isabel C.</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>Guillemot, Joannès</creatorcontrib><creatorcontrib>Hylander, Kristoffer</creatorcontrib><creatorcontrib>Jucker, Tommaso</creatorcontrib><creatorcontrib>Kopecký, Martin</creatorcontrib><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Macek, Martin</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Urban, Josef</creatorcontrib><creatorcontrib>Brink, Liesbeth</creatorcontrib><creatorcontrib>Vangansbeke, Pieter</creatorcontrib><creatorcontrib>Von Oppen, Jonathan</creatorcontrib><creatorcontrib>Wild, Jan</creatorcontrib><creatorcontrib>Boike, Julia</creatorcontrib><creatorcontrib>Canessa, Rafaella</creatorcontrib><creatorcontrib>Nosetto, Marcelo</creatorcontrib><creatorcontrib>Rubtsov, Alexey</creatorcontrib><creatorcontrib>Sallo‐Bravo, Jhonatan</creatorcontrib><creatorcontrib>Scheffers, Brett R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klinges, David H.</au><au>Baecher, J. Alex</au><au>Lembrechts, Jonas J.</au><au>Maclean, Ilya M. D.</au><au>Lenoir, Jonathan</au><au>Greiser, Caroline</au><au>Ashcroft, Michael</au><au>Evans, Luke J.</au><au>Kearney, Michael R.</au><au>Aalto, Juha</au><au>Barrio, Isabel C.</au><au>De Frenne, Pieter</au><au>Guillemot, Joannès</au><au>Hylander, Kristoffer</au><au>Jucker, Tommaso</au><au>Kopecký, Martin</au><au>Luoto, Miska</au><au>Macek, Martin</au><au>Nijs, Ivan</au><au>Urban, Josef</au><au>Brink, Liesbeth</au><au>Vangansbeke, Pieter</au><au>Von Oppen, Jonathan</au><au>Wild, Jan</au><au>Boike, Julia</au><au>Canessa, Rafaella</au><au>Nosetto, Marcelo</au><au>Rubtsov, Alexey</au><au>Sallo‐Bravo, Jhonatan</au><au>Scheffers, Brett R.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</atitle><jtitle>Global ecology and biogeography</jtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>9</issue><spage>e13884</spage><epage>n/a</epage><pages>e13884-n/a</pages><issn>1466-822X</issn><issn>1466-8238</issn><eissn>1466-8238</eissn><eissn>1466-822X</eissn><abstract>Aim
The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data.
Location
Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA).
Time Period
1960–2018.
Major Taxa Studied
Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth.
Methods
We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses.
Results
For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively.
Main Conclusions
We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13884</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8613-0943</orcidid><orcidid>https://orcid.org/0000-0002-8120-5248</orcidid><orcidid>https://orcid.org/0000-0003-4385-7656</orcidid><orcidid>https://orcid.org/0000-0002-5609-5921</orcidid><orcidid>https://orcid.org/0000-0002-6356-2858</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-2157-5965</orcidid><orcidid>https://orcid.org/0000-0001-9007-4959</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-7900-9379</orcidid><orcidid>https://orcid.org/0000-0001-8030-9136</orcidid><orcidid>https://orcid.org/0000-0002-9428-490X</orcidid><orcidid>https://orcid.org/0000-0002-1215-2648</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid><orcidid>https://orcid.org/0000-0002-6618-4733</orcidid><orcidid>https://orcid.org/0000-0001-6819-4911</orcidid><orcidid>https://orcid.org/0000-0002-9663-4344</orcidid><orcidid>https://orcid.org/0000-0003-0247-5758</orcidid><orcidid>https://orcid.org/0000-0003-0313-8147</orcidid><orcidid>https://orcid.org/0000-0002-5875-2112</orcidid><orcidid>https://orcid.org/0000-0003-3007-4070</orcidid><orcidid>https://orcid.org/0000-0003-1730-947X</orcidid><orcidid>https://orcid.org/0000-0001-6346-2964</orcidid><orcidid>https://orcid.org/0000-0001-6203-5143</orcidid><orcidid>https://orcid.org/0000-0002-6979-9880</orcidid><orcidid>https://orcid.org/0000-0003-2423-3821</orcidid><orcidid>https://orcid.org/0000-0002-1018-9316</orcidid><orcidid>https://orcid.org/0000-0003-4023-4402</orcidid><orcidid>https://orcid.org/0000-0002-0751-6312</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2024-09, Vol.33 (9), p.e13884-n/a |
issn | 1466-822X 1466-8238 1466-8238 1466-822X |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_131230 |
source | Access via Wiley Online Library |
subjects | Aquatic insects Biogeography biophysical ecology Case studies Climate climate change Climate prediction Climatic data Ecological models Ecology ecophysiology Ekologi Environmental Sciences Fysisk geografi Grain size macroclimate Microclimate Mosquitoes nonlinearity Organisms Physical Geography Proximity resolution Soil temperature Spatial discrimination Spatial resolution Spatiotemporal data species distribution model Temporal resolution |
title | Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20microclimate:%20Moving%20beyond%20spatiotemporal%20resolution%20improves%20ecological%20predictions&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Klinges,%20David%20H.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-09&rft.volume=33&rft.issue=9&rft.spage=e13884&rft.epage=n/a&rft.pages=e13884-n/a&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13884&rft_dat=%3Cproquest_swepu%3E3092968653%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092968653&rft_id=info:pmid/&rfr_iscdi=true |