Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions

Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2024-09, Vol.33 (9), p.e13884-n/a
Hauptverfasser: Klinges, David H., Baecher, J. Alex, Lembrechts, Jonas J., Maclean, Ilya M. D., Lenoir, Jonathan, Greiser, Caroline, Ashcroft, Michael, Evans, Luke J., Kearney, Michael R., Aalto, Juha, Barrio, Isabel C., De Frenne, Pieter, Guillemot, Joannès, Hylander, Kristoffer, Jucker, Tommaso, Kopecký, Martin, Luoto, Miska, Macek, Martin, Nijs, Ivan, Urban, Josef, Brink, Liesbeth, Vangansbeke, Pieter, Von Oppen, Jonathan, Wild, Jan, Boike, Julia, Canessa, Rafaella, Nosetto, Marcelo, Rubtsov, Alexey, Sallo‐Bravo, Jhonatan, Scheffers, Brett R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e13884
container_title Global ecology and biogeography
container_volume 33
creator Klinges, David H.
Baecher, J. Alex
Lembrechts, Jonas J.
Maclean, Ilya M. D.
Lenoir, Jonathan
Greiser, Caroline
Ashcroft, Michael
Evans, Luke J.
Kearney, Michael R.
Aalto, Juha
Barrio, Isabel C.
De Frenne, Pieter
Guillemot, Joannès
Hylander, Kristoffer
Jucker, Tommaso
Kopecký, Martin
Luoto, Miska
Macek, Martin
Nijs, Ivan
Urban, Josef
Brink, Liesbeth
Vangansbeke, Pieter
Von Oppen, Jonathan
Wild, Jan
Boike, Julia
Canessa, Rafaella
Nosetto, Marcelo
Rubtsov, Alexey
Sallo‐Bravo, Jhonatan
Scheffers, Brett R.
description Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period 1960–2018. Major Taxa Studied Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively. Main Conclusions We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.
doi_str_mv 10.1111/geb.13884
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_131230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3092968653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</originalsourceid><addsrcrecordid>eNp1kT9PwzAQxSMEEuXPwDeIxMTQco4T12ErVaFIRTCAxIRlO5fiKq2D3RT67XEIKmLAy53ufu-k5xdFZwQGJLzLOaoBoZyne1GPpIz1eUL5_q5PXg6jI-8XAJClGetFr4_OfpqlrOKl0c7qKvRrvIrv7cas5rHCrV0Vsa_l2tg1LmvrAurQ26oJk1VslrWzG_QxalvZudFhXTssjG7X_iQ6KGXl8fSnHkfPN5On8bQ_e7i9G49mfZ0wSPulZEyiLnKEIZSQq2GGqpSFSphWGjlInWRKAuVSUUiLknNCWlCSXLEyp8fRoLvrP7BulKhd8OG2wkojfNUo6doiPApCSUIhCC46wZus_tDT0Uy0M0gZBQbDDQnseccGq-8N-rVY2Matgh9BIU9yxllGfy-Gb_TeYbk7S0C02YiQjfjOJrCXHfthKtz-D4rbyXWn-AKtI5MK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092968653</pqid></control><display><type>article</type><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><source>Access via Wiley Online Library</source><creator>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R.</creator><creatorcontrib>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period 1960–2018. Major Taxa Studied Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively. Main Conclusions We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</description><identifier>ISSN: 1466-822X</identifier><identifier>ISSN: 1466-8238</identifier><identifier>EISSN: 1466-8238</identifier><identifier>EISSN: 1466-822X</identifier><identifier>DOI: 10.1111/geb.13884</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aquatic insects ; Biogeography ; biophysical ecology ; Case studies ; Climate ; climate change ; Climate prediction ; Climatic data ; Ecological models ; Ecology ; ecophysiology ; Ekologi ; Environmental Sciences ; Fysisk geografi ; Grain size ; macroclimate ; Microclimate ; Mosquitoes ; nonlinearity ; Organisms ; Physical Geography ; Proximity ; resolution ; Soil temperature ; Spatial discrimination ; Spatial resolution ; Spatiotemporal data ; species distribution model ; Temporal resolution</subject><ispartof>Global ecology and biogeography, 2024-09, Vol.33 (9), p.e13884-n/a</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2024 John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</cites><orcidid>0000-0002-8613-0943 ; 0000-0002-8120-5248 ; 0000-0003-4385-7656 ; 0000-0002-5609-5921 ; 0000-0002-6356-2858 ; 0000-0002-1933-0750 ; 0000-0003-2157-5965 ; 0000-0001-9007-4959 ; 0000-0003-0638-9582 ; 0000-0002-7900-9379 ; 0000-0001-8030-9136 ; 0000-0002-9428-490X ; 0000-0002-1215-2648 ; 0000-0002-3349-8744 ; 0000-0002-6618-4733 ; 0000-0001-6819-4911 ; 0000-0002-9663-4344 ; 0000-0003-0247-5758 ; 0000-0003-0313-8147 ; 0000-0002-5875-2112 ; 0000-0003-3007-4070 ; 0000-0003-1730-947X ; 0000-0001-6346-2964 ; 0000-0001-6203-5143 ; 0000-0002-6979-9880 ; 0000-0003-2423-3821 ; 0000-0002-1018-9316 ; 0000-0003-4023-4402 ; 0000-0002-0751-6312 ; 0000-0003-3111-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-04630607$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/131230$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Klinges, David H.</creatorcontrib><creatorcontrib>Baecher, J. Alex</creatorcontrib><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Maclean, Ilya M. D.</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Greiser, Caroline</creatorcontrib><creatorcontrib>Ashcroft, Michael</creatorcontrib><creatorcontrib>Evans, Luke J.</creatorcontrib><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Aalto, Juha</creatorcontrib><creatorcontrib>Barrio, Isabel C.</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>Guillemot, Joannès</creatorcontrib><creatorcontrib>Hylander, Kristoffer</creatorcontrib><creatorcontrib>Jucker, Tommaso</creatorcontrib><creatorcontrib>Kopecký, Martin</creatorcontrib><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Macek, Martin</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Urban, Josef</creatorcontrib><creatorcontrib>Brink, Liesbeth</creatorcontrib><creatorcontrib>Vangansbeke, Pieter</creatorcontrib><creatorcontrib>Von Oppen, Jonathan</creatorcontrib><creatorcontrib>Wild, Jan</creatorcontrib><creatorcontrib>Boike, Julia</creatorcontrib><creatorcontrib>Canessa, Rafaella</creatorcontrib><creatorcontrib>Nosetto, Marcelo</creatorcontrib><creatorcontrib>Rubtsov, Alexey</creatorcontrib><creatorcontrib>Sallo‐Bravo, Jhonatan</creatorcontrib><creatorcontrib>Scheffers, Brett R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><title>Global ecology and biogeography</title><description>Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period 1960–2018. Major Taxa Studied Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively. Main Conclusions We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</description><subject>Aquatic insects</subject><subject>Biogeography</subject><subject>biophysical ecology</subject><subject>Case studies</subject><subject>Climate</subject><subject>climate change</subject><subject>Climate prediction</subject><subject>Climatic data</subject><subject>Ecological models</subject><subject>Ecology</subject><subject>ecophysiology</subject><subject>Ekologi</subject><subject>Environmental Sciences</subject><subject>Fysisk geografi</subject><subject>Grain size</subject><subject>macroclimate</subject><subject>Microclimate</subject><subject>Mosquitoes</subject><subject>nonlinearity</subject><subject>Organisms</subject><subject>Physical Geography</subject><subject>Proximity</subject><subject>resolution</subject><subject>Soil temperature</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spatiotemporal data</subject><subject>species distribution model</subject><subject>Temporal resolution</subject><issn>1466-822X</issn><issn>1466-8238</issn><issn>1466-8238</issn><issn>1466-822X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kT9PwzAQxSMEEuXPwDeIxMTQco4T12ErVaFIRTCAxIRlO5fiKq2D3RT67XEIKmLAy53ufu-k5xdFZwQGJLzLOaoBoZyne1GPpIz1eUL5_q5PXg6jI-8XAJClGetFr4_OfpqlrOKl0c7qKvRrvIrv7cas5rHCrV0Vsa_l2tg1LmvrAurQ26oJk1VslrWzG_QxalvZudFhXTssjG7X_iQ6KGXl8fSnHkfPN5On8bQ_e7i9G49mfZ0wSPulZEyiLnKEIZSQq2GGqpSFSphWGjlInWRKAuVSUUiLknNCWlCSXLEyp8fRoLvrP7BulKhd8OG2wkojfNUo6doiPApCSUIhCC46wZus_tDT0Uy0M0gZBQbDDQnseccGq-8N-rVY2Matgh9BIU9yxllGfy-Gb_TeYbk7S0C02YiQjfjOJrCXHfthKtz-D4rbyXWn-AKtI5MK</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Klinges, David H.</creator><creator>Baecher, J. Alex</creator><creator>Lembrechts, Jonas J.</creator><creator>Maclean, Ilya M. D.</creator><creator>Lenoir, Jonathan</creator><creator>Greiser, Caroline</creator><creator>Ashcroft, Michael</creator><creator>Evans, Luke J.</creator><creator>Kearney, Michael R.</creator><creator>Aalto, Juha</creator><creator>Barrio, Isabel C.</creator><creator>De Frenne, Pieter</creator><creator>Guillemot, Joannès</creator><creator>Hylander, Kristoffer</creator><creator>Jucker, Tommaso</creator><creator>Kopecký, Martin</creator><creator>Luoto, Miska</creator><creator>Macek, Martin</creator><creator>Nijs, Ivan</creator><creator>Urban, Josef</creator><creator>Brink, Liesbeth</creator><creator>Vangansbeke, Pieter</creator><creator>Von Oppen, Jonathan</creator><creator>Wild, Jan</creator><creator>Boike, Julia</creator><creator>Canessa, Rafaella</creator><creator>Nosetto, Marcelo</creator><creator>Rubtsov, Alexey</creator><creator>Sallo‐Bravo, Jhonatan</creator><creator>Scheffers, Brett R.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-8613-0943</orcidid><orcidid>https://orcid.org/0000-0002-8120-5248</orcidid><orcidid>https://orcid.org/0000-0003-4385-7656</orcidid><orcidid>https://orcid.org/0000-0002-5609-5921</orcidid><orcidid>https://orcid.org/0000-0002-6356-2858</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-2157-5965</orcidid><orcidid>https://orcid.org/0000-0001-9007-4959</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-7900-9379</orcidid><orcidid>https://orcid.org/0000-0001-8030-9136</orcidid><orcidid>https://orcid.org/0000-0002-9428-490X</orcidid><orcidid>https://orcid.org/0000-0002-1215-2648</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid><orcidid>https://orcid.org/0000-0002-6618-4733</orcidid><orcidid>https://orcid.org/0000-0001-6819-4911</orcidid><orcidid>https://orcid.org/0000-0002-9663-4344</orcidid><orcidid>https://orcid.org/0000-0003-0247-5758</orcidid><orcidid>https://orcid.org/0000-0003-0313-8147</orcidid><orcidid>https://orcid.org/0000-0002-5875-2112</orcidid><orcidid>https://orcid.org/0000-0003-3007-4070</orcidid><orcidid>https://orcid.org/0000-0003-1730-947X</orcidid><orcidid>https://orcid.org/0000-0001-6346-2964</orcidid><orcidid>https://orcid.org/0000-0001-6203-5143</orcidid><orcidid>https://orcid.org/0000-0002-6979-9880</orcidid><orcidid>https://orcid.org/0000-0003-2423-3821</orcidid><orcidid>https://orcid.org/0000-0002-1018-9316</orcidid><orcidid>https://orcid.org/0000-0003-4023-4402</orcidid><orcidid>https://orcid.org/0000-0002-0751-6312</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid></search><sort><creationdate>202409</creationdate><title>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</title><author>Klinges, David H. ; Baecher, J. Alex ; Lembrechts, Jonas J. ; Maclean, Ilya M. D. ; Lenoir, Jonathan ; Greiser, Caroline ; Ashcroft, Michael ; Evans, Luke J. ; Kearney, Michael R. ; Aalto, Juha ; Barrio, Isabel C. ; De Frenne, Pieter ; Guillemot, Joannès ; Hylander, Kristoffer ; Jucker, Tommaso ; Kopecký, Martin ; Luoto, Miska ; Macek, Martin ; Nijs, Ivan ; Urban, Josef ; Brink, Liesbeth ; Vangansbeke, Pieter ; Von Oppen, Jonathan ; Wild, Jan ; Boike, Julia ; Canessa, Rafaella ; Nosetto, Marcelo ; Rubtsov, Alexey ; Sallo‐Bravo, Jhonatan ; Scheffers, Brett R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2604-fa66aecd9e070f09b75ebfadb26cbce80ac25ba038ab304df88110f09a19b6f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic insects</topic><topic>Biogeography</topic><topic>biophysical ecology</topic><topic>Case studies</topic><topic>Climate</topic><topic>climate change</topic><topic>Climate prediction</topic><topic>Climatic data</topic><topic>Ecological models</topic><topic>Ecology</topic><topic>ecophysiology</topic><topic>Ekologi</topic><topic>Environmental Sciences</topic><topic>Fysisk geografi</topic><topic>Grain size</topic><topic>macroclimate</topic><topic>Microclimate</topic><topic>Mosquitoes</topic><topic>nonlinearity</topic><topic>Organisms</topic><topic>Physical Geography</topic><topic>Proximity</topic><topic>resolution</topic><topic>Soil temperature</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spatiotemporal data</topic><topic>species distribution model</topic><topic>Temporal resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klinges, David H.</creatorcontrib><creatorcontrib>Baecher, J. Alex</creatorcontrib><creatorcontrib>Lembrechts, Jonas J.</creatorcontrib><creatorcontrib>Maclean, Ilya M. D.</creatorcontrib><creatorcontrib>Lenoir, Jonathan</creatorcontrib><creatorcontrib>Greiser, Caroline</creatorcontrib><creatorcontrib>Ashcroft, Michael</creatorcontrib><creatorcontrib>Evans, Luke J.</creatorcontrib><creatorcontrib>Kearney, Michael R.</creatorcontrib><creatorcontrib>Aalto, Juha</creatorcontrib><creatorcontrib>Barrio, Isabel C.</creatorcontrib><creatorcontrib>De Frenne, Pieter</creatorcontrib><creatorcontrib>Guillemot, Joannès</creatorcontrib><creatorcontrib>Hylander, Kristoffer</creatorcontrib><creatorcontrib>Jucker, Tommaso</creatorcontrib><creatorcontrib>Kopecký, Martin</creatorcontrib><creatorcontrib>Luoto, Miska</creatorcontrib><creatorcontrib>Macek, Martin</creatorcontrib><creatorcontrib>Nijs, Ivan</creatorcontrib><creatorcontrib>Urban, Josef</creatorcontrib><creatorcontrib>Brink, Liesbeth</creatorcontrib><creatorcontrib>Vangansbeke, Pieter</creatorcontrib><creatorcontrib>Von Oppen, Jonathan</creatorcontrib><creatorcontrib>Wild, Jan</creatorcontrib><creatorcontrib>Boike, Julia</creatorcontrib><creatorcontrib>Canessa, Rafaella</creatorcontrib><creatorcontrib>Nosetto, Marcelo</creatorcontrib><creatorcontrib>Rubtsov, Alexey</creatorcontrib><creatorcontrib>Sallo‐Bravo, Jhonatan</creatorcontrib><creatorcontrib>Scheffers, Brett R.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klinges, David H.</au><au>Baecher, J. Alex</au><au>Lembrechts, Jonas J.</au><au>Maclean, Ilya M. D.</au><au>Lenoir, Jonathan</au><au>Greiser, Caroline</au><au>Ashcroft, Michael</au><au>Evans, Luke J.</au><au>Kearney, Michael R.</au><au>Aalto, Juha</au><au>Barrio, Isabel C.</au><au>De Frenne, Pieter</au><au>Guillemot, Joannès</au><au>Hylander, Kristoffer</au><au>Jucker, Tommaso</au><au>Kopecký, Martin</au><au>Luoto, Miska</au><au>Macek, Martin</au><au>Nijs, Ivan</au><au>Urban, Josef</au><au>Brink, Liesbeth</au><au>Vangansbeke, Pieter</au><au>Von Oppen, Jonathan</au><au>Wild, Jan</au><au>Boike, Julia</au><au>Canessa, Rafaella</au><au>Nosetto, Marcelo</au><au>Rubtsov, Alexey</au><au>Sallo‐Bravo, Jhonatan</au><au>Scheffers, Brett R.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions</atitle><jtitle>Global ecology and biogeography</jtitle><date>2024-09</date><risdate>2024</risdate><volume>33</volume><issue>9</issue><spage>e13884</spage><epage>n/a</epage><pages>e13884-n/a</pages><issn>1466-822X</issn><issn>1466-8238</issn><eissn>1466-8238</eissn><eissn>1466-822X</eissn><abstract>Aim The scale of environmental data is often defined by their extent (spatial area, temporal duration) and resolution (grain size, temporal interval). Although describing climate data scale via these terms is appropriate for most meteorological applications, for ecology and biogeography, climate data of the same spatiotemporal resolution and extent may differ in their relevance to an organism. Here, we propose that climate proximity, or how well climate data represent the actual conditions that an organism is exposed to, is more important for ecological realism than the spatiotemporal resolution of the climate data. Location Temperature comparison in nine countries across four continents; ecological case studies in Alberta (Canada), Sabah (Malaysia) and North Carolina/Tennessee (USA). Time Period 1960–2018. Major Taxa Studied Case studies with flies, mosquitoes and salamanders, but concepts relevant to all life on earth. Methods We compare the accuracy of two macroclimate data sources (ERA5 and WorldClim) and a novel microclimate model (microclimf) in predicting soil temperatures. We then use ERA5, WorldClim and microclimf to drive ecological models in three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and spatiotemporal (salamander range shifts) ecological responses. Results For predicting soil temperatures, microclimf had 24.9% and 16.4% lower absolute bias than ERA5 and WorldClim respectively. Across the case studies, we find that increasing proximity (from macroclimate to microclimate) yields a 247% improvement in performance of ecological models on average, compared to 18% and 9% improvements from increasing spatial resolution 20‐fold, and temporal resolution 30‐fold respectively. Main Conclusions We propose that increasing climate proximity, even if at the sacrifice of finer climate spatiotemporal resolution, may improve ecological predictions. We emphasize biophysically informed approaches, rather than generic formulations, when quantifying ecoclimatic relationships. Redefining the scale of climate through the lens of the organism itself helps reveal mechanisms underlying how climate shapes ecological systems.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13884</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8613-0943</orcidid><orcidid>https://orcid.org/0000-0002-8120-5248</orcidid><orcidid>https://orcid.org/0000-0003-4385-7656</orcidid><orcidid>https://orcid.org/0000-0002-5609-5921</orcidid><orcidid>https://orcid.org/0000-0002-6356-2858</orcidid><orcidid>https://orcid.org/0000-0002-1933-0750</orcidid><orcidid>https://orcid.org/0000-0003-2157-5965</orcidid><orcidid>https://orcid.org/0000-0001-9007-4959</orcidid><orcidid>https://orcid.org/0000-0003-0638-9582</orcidid><orcidid>https://orcid.org/0000-0002-7900-9379</orcidid><orcidid>https://orcid.org/0000-0001-8030-9136</orcidid><orcidid>https://orcid.org/0000-0002-9428-490X</orcidid><orcidid>https://orcid.org/0000-0002-1215-2648</orcidid><orcidid>https://orcid.org/0000-0002-3349-8744</orcidid><orcidid>https://orcid.org/0000-0002-6618-4733</orcidid><orcidid>https://orcid.org/0000-0001-6819-4911</orcidid><orcidid>https://orcid.org/0000-0002-9663-4344</orcidid><orcidid>https://orcid.org/0000-0003-0247-5758</orcidid><orcidid>https://orcid.org/0000-0003-0313-8147</orcidid><orcidid>https://orcid.org/0000-0002-5875-2112</orcidid><orcidid>https://orcid.org/0000-0003-3007-4070</orcidid><orcidid>https://orcid.org/0000-0003-1730-947X</orcidid><orcidid>https://orcid.org/0000-0001-6346-2964</orcidid><orcidid>https://orcid.org/0000-0001-6203-5143</orcidid><orcidid>https://orcid.org/0000-0002-6979-9880</orcidid><orcidid>https://orcid.org/0000-0003-2423-3821</orcidid><orcidid>https://orcid.org/0000-0002-1018-9316</orcidid><orcidid>https://orcid.org/0000-0003-4023-4402</orcidid><orcidid>https://orcid.org/0000-0002-0751-6312</orcidid><orcidid>https://orcid.org/0000-0003-3111-680X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2024-09, Vol.33 (9), p.e13884-n/a
issn 1466-822X
1466-8238
1466-8238
1466-822X
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_131230
source Access via Wiley Online Library
subjects Aquatic insects
Biogeography
biophysical ecology
Case studies
Climate
climate change
Climate prediction
Climatic data
Ecological models
Ecology
ecophysiology
Ekologi
Environmental Sciences
Fysisk geografi
Grain size
macroclimate
Microclimate
Mosquitoes
nonlinearity
Organisms
Physical Geography
Proximity
resolution
Soil temperature
Spatial discrimination
Spatial resolution
Spatiotemporal data
species distribution model
Temporal resolution
title Proximal microclimate: Moving beyond spatiotemporal resolution improves ecological predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20microclimate:%20Moving%20beyond%20spatiotemporal%20resolution%20improves%20ecological%20predictions&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Klinges,%20David%20H.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-09&rft.volume=33&rft.issue=9&rft.spage=e13884&rft.epage=n/a&rft.pages=e13884-n/a&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13884&rft_dat=%3Cproquest_swepu%3E3092968653%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092968653&rft_id=info:pmid/&rfr_iscdi=true