An imperative for soil spectroscopic modelling is to think global but fit local with transfer learning

Soil spectroscopy with machine learning (ML) can estimate soil properties. Extensive soil spectral libraries (SSLs) have been developed for this purpose. However, general models built with those SSLs do not generalize well on new ‘unseen’ local data. The main reason is the different characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth-science reviews 2024-07, Vol.254, p.104797, Article 104797
Hauptverfasser: Viscarra Rossel, Raphael A., Shen, Zefang, Ramirez Lopez, Leonardo, Behrens, Thorsten, Shi, Zhou, Wetterlind, Johanna, Sudduth, Kenneth A., Stenberg, Bo, Guerrero, Cesar, Gholizadeh, Asa, Ben-Dor, Eyal, St Luce, Mervin, Orellano, Claudio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!