Estimation of change with partially overlapping and spatially balanced samples

Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2024-02, Vol.35 (1), p.n/a
Hauptverfasser: Zhao, Xin, Grafström, Anton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Environmetrics (London, Ont.)
container_volume 35
creator Zhao, Xin
Grafström, Anton
description Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well‐spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.
doi_str_mv 10.1002/env.2825
format Article
fullrecord <record><control><sourceid>wiley_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_126373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ENV2825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2995-2395b8c55180a8a0a8cb59e4da965ebb92ac4d86974770f94ba5f38b79c898a73</originalsourceid><addsrcrecordid>eNp1UMFKAzEQDaJgrYKfkKOXrdnspkmOUqoVSr2oeAuTNNtG0t2QbFv696a2ePMwvGHmveHNQ-i-JKOSEPpo292ICsou0KAkUhZEsq_L3JeCFDUh8hrdpPRNcjdmfIAW09S7DfSua3HXYLOGdmXx3vVrHCD2Drw_4G5no4cQXLvC0C5xCnDeaPDQGptHsAneplt01YBP9u6MQ_TxPH2fzIr528vr5GleGColK2glmRaGsewKBOQymklbLyG7slpLCqZeirHkNeekkbUG1lRCc2mEFMCrIRqd7qa9DVutQsxPxIPqwKnktxriEVSyqqTjildZ8HASmNilFG3zJymJOgancnDqGFymFifq3nl7-JenpovPX_4PH39w8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of change with partially overlapping and spatially balanced samples</title><source>Wiley Online Library Journals</source><source>SWEPUB Freely available online</source><creator>Zhao, Xin ; Grafström, Anton</creator><creatorcontrib>Zhao, Xin ; Grafström, Anton ; Sveriges lantbruksuniversitet</creatorcontrib><description>Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well‐spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.</description><identifier>ISSN: 1180-4009</identifier><identifier>ISSN: 1099-095X</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2825</identifier><language>eng</language><subject>overlapping samples ; Probability Theory and Statistics ; repeated surveys ; Sannolikhetsteori och statistik ; spatially correlated Poisson sampling ; well‐spread samples</subject><ispartof>Environmetrics (London, Ont.), 2024-02, Vol.35 (1), p.n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2995-2395b8c55180a8a0a8cb59e4da965ebb92ac4d86974770f94ba5f38b79c898a73</cites><orcidid>0000-0002-4345-4024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fenv.2825$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fenv.2825$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/126373$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Grafström, Anton</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Estimation of change with partially overlapping and spatially balanced samples</title><title>Environmetrics (London, Ont.)</title><description>Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well‐spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.</description><subject>overlapping samples</subject><subject>Probability Theory and Statistics</subject><subject>repeated surveys</subject><subject>Sannolikhetsteori och statistik</subject><subject>spatially correlated Poisson sampling</subject><subject>well‐spread samples</subject><issn>1180-4009</issn><issn>1099-095X</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>D8T</sourceid><recordid>eNp1UMFKAzEQDaJgrYKfkKOXrdnspkmOUqoVSr2oeAuTNNtG0t2QbFv696a2ePMwvGHmveHNQ-i-JKOSEPpo292ICsou0KAkUhZEsq_L3JeCFDUh8hrdpPRNcjdmfIAW09S7DfSua3HXYLOGdmXx3vVrHCD2Drw_4G5no4cQXLvC0C5xCnDeaPDQGptHsAneplt01YBP9u6MQ_TxPH2fzIr528vr5GleGColK2glmRaGsewKBOQymklbLyG7slpLCqZeirHkNeekkbUG1lRCc2mEFMCrIRqd7qa9DVutQsxPxIPqwKnktxriEVSyqqTjildZ8HASmNilFG3zJymJOgancnDqGFymFifq3nl7-JenpovPX_4PH39w8Q</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Zhao, Xin</creator><creator>Grafström, Anton</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-4345-4024</orcidid></search><sort><creationdate>202402</creationdate><title>Estimation of change with partially overlapping and spatially balanced samples</title><author>Zhao, Xin ; Grafström, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2995-2395b8c55180a8a0a8cb59e4da965ebb92ac4d86974770f94ba5f38b79c898a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>overlapping samples</topic><topic>Probability Theory and Statistics</topic><topic>repeated surveys</topic><topic>Sannolikhetsteori och statistik</topic><topic>spatially correlated Poisson sampling</topic><topic>well‐spread samples</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Grafström, Anton</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xin</au><au>Grafström, Anton</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of change with partially overlapping and spatially balanced samples</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><epage>n/a</epage><issn>1180-4009</issn><issn>1099-095X</issn><eissn>1099-095X</eissn><abstract>Spatially balanced samples are samples that are well‐spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well‐spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.</abstract><doi>10.1002/env.2825</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4345-4024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2024-02, Vol.35 (1), p.n/a
issn 1180-4009
1099-095X
1099-095X
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_126373
source Wiley Online Library Journals; SWEPUB Freely available online
subjects overlapping samples
Probability Theory and Statistics
repeated surveys
Sannolikhetsteori och statistik
spatially correlated Poisson sampling
well‐spread samples
title Estimation of change with partially overlapping and spatially balanced samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20change%20with%20partially%20overlapping%20and%20spatially%20balanced%20samples&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Zhao,%20Xin&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-02&rft.volume=35&rft.issue=1&rft.epage=n/a&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2825&rft_dat=%3Cwiley_swepu%3EENV2825%3C/wiley_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true