Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel
Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its...
Gespeichert in:
Veröffentlicht in: | Journal of rare earths 2024-04, Vol.42 (4), p.775-782 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 782 |
---|---|
container_issue | 4 |
container_start_page | 775 |
container_title | Journal of rare earths |
container_volume | 42 |
creator | dos Reis, Glaydson S. Pinto, Diana Lütke, Sabrina F. Lima, Éder C. Silva, Luis F.O. De Brum, Irineu A.S. Dotto, Guilherme L. |
description | Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.
Scheme for the yttrium (Y3+) adsorption using the chitin-based adsorbents. [Display omitted] |
doi_str_mv | 10.1016/j.jre.2023.04.008 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_122382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1002072123001084</els_id><sourcerecordid>S1002072123001084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9fa8b5e67508b7246477b0053cbb49f2432bd444d746852cec447219782a37c83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG85KtI6TdKmxdOy-AULXvTgKaTpdDfLblOS1mX_vVlWPXoYZmDmeWEeQq4zSDPIivt1uvaYMmA8BZEClCdkwnKoElEV_JRMMgCWgGTZObkIYQ3AZV7BhOxmTXC-H6zrqGvpfhi8Hbf05pPf3VLdNdS4zmA3eP174rVHitoPK4ob3MZdoK13W9qvXIi13PchJozBdktqVnaw3THoZ0Tvlri5JGet3gS8-ulT8vH0-D5_SRZvz6_z2SIxnBdDUrW6rHMsZA5lLZkohJQ1QM5NXYuqZYKzuhFCNFIUZc4MGiHik5UsmebSlHxK0mNu2GE_1qr3dqv9XjltVdiMtfaHpgKqjDFesghkR8B4F4LH9g_JQB1Uq7WKqtVBtQKhourIPBwZjJ98WYyZxmL01liPZlCNs__Q3wUMiIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>dos Reis, Glaydson S. ; Pinto, Diana ; Lütke, Sabrina F. ; Lima, Éder C. ; Silva, Luis F.O. ; De Brum, Irineu A.S. ; Dotto, Guilherme L.</creator><creatorcontrib>dos Reis, Glaydson S. ; Pinto, Diana ; Lütke, Sabrina F. ; Lima, Éder C. ; Silva, Luis F.O. ; De Brum, Irineu A.S. ; Dotto, Guilherme L. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.
Scheme for the yttrium (Y3+) adsorption using the chitin-based adsorbents. [Display omitted]</description><identifier>ISSN: 1002-0721</identifier><identifier>EISSN: 2509-4963</identifier><identifier>DOI: 10.1016/j.jre.2023.04.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chitin porous aerogel ; Chitin powder ; Fysikalisk kemi ; Physical Chemistry ; Rare earths ; Sustainable material ; Yttrium adsorption and recovery</subject><ispartof>Journal of rare earths, 2024-04, Vol.42 (4), p.775-782</ispartof><rights>2023 Chinese Society of Rare Earths</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9fa8b5e67508b7246477b0053cbb49f2432bd444d746852cec447219782a37c83</citedby><cites>FETCH-LOGICAL-c336t-9fa8b5e67508b7246477b0053cbb49f2432bd444d746852cec447219782a37c83</cites><orcidid>0000-0002-4413-8138 ; 0000-0001-8727-9793 ; 0000-0003-4852-8325 ; 0000-0002-8734-1208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jre.2023.04.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/122382$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>dos Reis, Glaydson S.</creatorcontrib><creatorcontrib>Pinto, Diana</creatorcontrib><creatorcontrib>Lütke, Sabrina F.</creatorcontrib><creatorcontrib>Lima, Éder C.</creatorcontrib><creatorcontrib>Silva, Luis F.O.</creatorcontrib><creatorcontrib>De Brum, Irineu A.S.</creatorcontrib><creatorcontrib>Dotto, Guilherme L.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel</title><title>Journal of rare earths</title><description>Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.
Scheme for the yttrium (Y3+) adsorption using the chitin-based adsorbents. [Display omitted]</description><subject>Chitin porous aerogel</subject><subject>Chitin powder</subject><subject>Fysikalisk kemi</subject><subject>Physical Chemistry</subject><subject>Rare earths</subject><subject>Sustainable material</subject><subject>Yttrium adsorption and recovery</subject><issn>1002-0721</issn><issn>2509-4963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG85KtI6TdKmxdOy-AULXvTgKaTpdDfLblOS1mX_vVlWPXoYZmDmeWEeQq4zSDPIivt1uvaYMmA8BZEClCdkwnKoElEV_JRMMgCWgGTZObkIYQ3AZV7BhOxmTXC-H6zrqGvpfhi8Hbf05pPf3VLdNdS4zmA3eP174rVHitoPK4ob3MZdoK13W9qvXIi13PchJozBdktqVnaw3THoZ0Tvlri5JGet3gS8-ulT8vH0-D5_SRZvz6_z2SIxnBdDUrW6rHMsZA5lLZkohJQ1QM5NXYuqZYKzuhFCNFIUZc4MGiHik5UsmebSlHxK0mNu2GE_1qr3dqv9XjltVdiMtfaHpgKqjDFesghkR8B4F4LH9g_JQB1Uq7WKqtVBtQKhourIPBwZjJ98WYyZxmL01liPZlCNs__Q3wUMiIQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>dos Reis, Glaydson S.</creator><creator>Pinto, Diana</creator><creator>Lütke, Sabrina F.</creator><creator>Lima, Éder C.</creator><creator>Silva, Luis F.O.</creator><creator>De Brum, Irineu A.S.</creator><creator>Dotto, Guilherme L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><orcidid>https://orcid.org/0000-0002-4413-8138</orcidid><orcidid>https://orcid.org/0000-0001-8727-9793</orcidid><orcidid>https://orcid.org/0000-0003-4852-8325</orcidid><orcidid>https://orcid.org/0000-0002-8734-1208</orcidid></search><sort><creationdate>20240401</creationdate><title>Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel</title><author>dos Reis, Glaydson S. ; Pinto, Diana ; Lütke, Sabrina F. ; Lima, Éder C. ; Silva, Luis F.O. ; De Brum, Irineu A.S. ; Dotto, Guilherme L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9fa8b5e67508b7246477b0053cbb49f2432bd444d746852cec447219782a37c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chitin porous aerogel</topic><topic>Chitin powder</topic><topic>Fysikalisk kemi</topic><topic>Physical Chemistry</topic><topic>Rare earths</topic><topic>Sustainable material</topic><topic>Yttrium adsorption and recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Reis, Glaydson S.</creatorcontrib><creatorcontrib>Pinto, Diana</creatorcontrib><creatorcontrib>Lütke, Sabrina F.</creatorcontrib><creatorcontrib>Lima, Éder C.</creatorcontrib><creatorcontrib>Silva, Luis F.O.</creatorcontrib><creatorcontrib>De Brum, Irineu A.S.</creatorcontrib><creatorcontrib>Dotto, Guilherme L.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>Journal of rare earths</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Reis, Glaydson S.</au><au>Pinto, Diana</au><au>Lütke, Sabrina F.</au><au>Lima, Éder C.</au><au>Silva, Luis F.O.</au><au>De Brum, Irineu A.S.</au><au>Dotto, Guilherme L.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel</atitle><jtitle>Journal of rare earths</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>42</volume><issue>4</issue><spage>775</spage><epage>782</epage><pages>775-782</pages><issn>1002-0721</issn><eissn>2509-4963</eissn><abstract>Chitin powder and chitin-aerogel were prepared from shrimp wastes and used to uptake Y3+ from aqueous solutions and concentrate this rare earth element from phosphogypsum (PG). Chitin aerogel displays a specific surface area of 945 m2/g, while chitin powder is 3.6 m2/g, which largely influences its adsorption ability. Regarding the adsorption in synthetic solutions, the effect of pH on Y3+ removal is strong for chitin powder adsorbent. In contrast, no big pH influence was detected for chitin aerogel. Electrostatic interactions and chelation can highlight the proposed mechanism of Y3+ on chitin adsorbents for the powder and aerogel. Furthermore, in addition to these interactions, pore filling/pore diffusion is the main mechanism of Y3+ removal in the chitin aerogel. Chitin aerogel is efficient in concentrating 8 times the Y3+ from PG, a very complex matrix. The complex chitin aerogel-Y3+ can be a secondary source of rare earth elements for other applications.
Scheme for the yttrium (Y3+) adsorption using the chitin-based adsorbents. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jre.2023.04.008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4413-8138</orcidid><orcidid>https://orcid.org/0000-0001-8727-9793</orcidid><orcidid>https://orcid.org/0000-0003-4852-8325</orcidid><orcidid>https://orcid.org/0000-0002-8734-1208</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-0721 |
ispartof | Journal of rare earths, 2024-04, Vol.42 (4), p.775-782 |
issn | 1002-0721 2509-4963 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_122382 |
source | ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
subjects | Chitin porous aerogel Chitin powder Fysikalisk kemi Physical Chemistry Rare earths Sustainable material Yttrium adsorption and recovery |
title | Adsorption of yttrium (Y3+) and concentration of rare earth elements from phosphogypsum using chitin and chitin aerogel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20yttrium%20(Y3+)%20and%20concentration%20of%20rare%20earth%20elements%20from%20phosphogypsum%20using%20chitin%20and%20chitin%20aerogel&rft.jtitle=Journal%20of%20rare%20earths&rft.au=dos%20Reis,%20Glaydson%20S.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2024-04-01&rft.volume=42&rft.issue=4&rft.spage=775&rft.epage=782&rft.pages=775-782&rft.issn=1002-0721&rft.eissn=2509-4963&rft_id=info:doi/10.1016/j.jre.2023.04.008&rft_dat=%3Celsevier_swepu%3ES1002072123001084%3C/elsevier_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1002072123001084&rfr_iscdi=true |