Synthesis on the effectiveness of soil translocation for plant community restoration
Many degraded ecosystems need active restoration to conserve biodiversity and re‐establish ecosystem function, both highlighted targets of the UN Decade on Ecosystem Restoration and the proposed EU Nature restoration law. Soil translocation, where both plant propagules and their associated soil biot...
Gespeichert in:
Veröffentlicht in: | The Journal of applied ecology 2023-04, Vol.60 (4), p.714-724 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 |
---|---|
container_issue | 4 |
container_start_page | 714 |
container_title | The Journal of applied ecology |
container_volume | 60 |
creator | Gerrits, Gijs M. Waenink, Rik Aradottir, Asa L. Buisson, Elise Dutoit, Thierry Ferreira, Maxmiller C. Fontaine, Joseph B. Jaunatre, Renaud Kardol, Paul Loeb, Roos Magro Ruiz, Sandra Maltz, Mia Pärtel, Meelis Peco, Begona Piqueray, Julien Pilon, Natashi A. L. Santa‐Regina, Ignacio Schmidt, Katharina T. Sengl, Philip Diggelen, Rudy Vieira, Daniel L. M. Brackel, Wolfgang Waryszak, Pawel Wills, Tim J. Marrs, Rob H. Wubs, E. R. Jasper |
description | Many degraded ecosystems need active restoration to conserve biodiversity and re‐establish ecosystem function, both highlighted targets of the UN Decade on Ecosystem Restoration and the proposed EU Nature restoration law. Soil translocation, where both plant propagules and their associated soil biota are co‐introduced, has increasingly been proposed as a powerful restoration technique for terrestrial ecosystems. However, a synthesis of the effectiveness of this method across ecosystems is lacking.
To address how soil translocation affects restoration success, we performed a meta‐analysis synthesizing data from 46 field experiments and their respective reference ecosystems in 17 countries across four continents. In each experiment, vegetation composition was recorded in response to soil translocation treatments and the resultant vegetational changes (diversity and composition) were quantified.
We found that soil translocation leads to plant community development further away from the control and more towards the reference plant communities compared with treatments where only plant propagules were introduced. However, the variability of effect sizes among experiments was large, suggesting strong dependence of restoration success on restoration context. We found that restoration success was more likely on loamy soils and when translocation treatments were implemented over larger spatial areas (>180 m2).
Furthermore, we found that restoration success either consistently increased or decreased over time depending on the experiment. Not only is this congruent with positive feedbacks between plant and soil communities driving plant community development, but it also suggests that the composition of the translocated plant and soil communities, and initial starting conditions, are critical for long‐term restoration success.
Synthesis and applications. Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.
Resumen
Muchos ecosistemas degradados necesitan restauración activa para conservar la biodiversidad y reestablecer las funciones ecosistémicas, objetivos principales del Decenio de las Naciones Unidas sobre la Restauración de los Ecosistemas y de la ley Europea de Restauración de la Naturaleza. La |
doi_str_mv | 10.1111/1365-2664.14364 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_121648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2795104941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4294-31595b202e5e9e972ae3fff3e8ceb2712670504505e7b4b5e15db3d7de7d1bba3</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxRdRsFbPXgOePKTdz6R7LKVapaBgPS-76SxNSbN1N6n0v3fTSMGTc5nhze8NDA-he4JHJNaYsEykNMv4iHCW8Qs0OCuXaIAxJelEYnKNbkLYYoylYGyAVh_HutlAKEPi6iROCVgLRVMeoIYQRZsEV1ZJ43UdKlfopoycdT7ZV7puksLtdm1dNsfEQ2icP-1v0ZXVVYC73z5En0_z1WyRLt-eX2bTZVpwKnnKiJDCUExBgASZUw3MWstgUoChOaFZjgXmAgvIDTcCiFgbts7XkK-JMZoN0ai_G75h3xq19-VO-6NyulShao32XVMBFKEk45NoeOwNG139oRfTpeo0zKTEGWMHEtmHnt1799XG59TWtb6O_yiaS0Ewl7yjxj1VeBeCB3s-S7DqclFdCqpLQZ1yiQ7RO77LCo7_4er1fd77fgCX3ZAI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2795104941</pqid></control><display><type>article</type><title>Synthesis on the effectiveness of soil translocation for plant community restoration</title><source>Wiley Online Library Journals Frontfile Complete</source><source>SWEPUB Freely available online</source><creator>Gerrits, Gijs M. ; Waenink, Rik ; Aradottir, Asa L. ; Buisson, Elise ; Dutoit, Thierry ; Ferreira, Maxmiller C. ; Fontaine, Joseph B. ; Jaunatre, Renaud ; Kardol, Paul ; Loeb, Roos ; Magro Ruiz, Sandra ; Maltz, Mia ; Pärtel, Meelis ; Peco, Begona ; Piqueray, Julien ; Pilon, Natashi A. L. ; Santa‐Regina, Ignacio ; Schmidt, Katharina T. ; Sengl, Philip ; Diggelen, Rudy ; Vieira, Daniel L. M. ; Brackel, Wolfgang ; Waryszak, Pawel ; Wills, Tim J. ; Marrs, Rob H. ; Wubs, E. R. Jasper</creator><creatorcontrib>Gerrits, Gijs M. ; Waenink, Rik ; Aradottir, Asa L. ; Buisson, Elise ; Dutoit, Thierry ; Ferreira, Maxmiller C. ; Fontaine, Joseph B. ; Jaunatre, Renaud ; Kardol, Paul ; Loeb, Roos ; Magro Ruiz, Sandra ; Maltz, Mia ; Pärtel, Meelis ; Peco, Begona ; Piqueray, Julien ; Pilon, Natashi A. L. ; Santa‐Regina, Ignacio ; Schmidt, Katharina T. ; Sengl, Philip ; Diggelen, Rudy ; Vieira, Daniel L. M. ; Brackel, Wolfgang ; Waryszak, Pawel ; Wills, Tim J. ; Marrs, Rob H. ; Wubs, E. R. Jasper ; Sveriges lantbruksuniversitet</creatorcontrib><description>Many degraded ecosystems need active restoration to conserve biodiversity and re‐establish ecosystem function, both highlighted targets of the UN Decade on Ecosystem Restoration and the proposed EU Nature restoration law. Soil translocation, where both plant propagules and their associated soil biota are co‐introduced, has increasingly been proposed as a powerful restoration technique for terrestrial ecosystems. However, a synthesis of the effectiveness of this method across ecosystems is lacking.
To address how soil translocation affects restoration success, we performed a meta‐analysis synthesizing data from 46 field experiments and their respective reference ecosystems in 17 countries across four continents. In each experiment, vegetation composition was recorded in response to soil translocation treatments and the resultant vegetational changes (diversity and composition) were quantified.
We found that soil translocation leads to plant community development further away from the control and more towards the reference plant communities compared with treatments where only plant propagules were introduced. However, the variability of effect sizes among experiments was large, suggesting strong dependence of restoration success on restoration context. We found that restoration success was more likely on loamy soils and when translocation treatments were implemented over larger spatial areas (>180 m2).
Furthermore, we found that restoration success either consistently increased or decreased over time depending on the experiment. Not only is this congruent with positive feedbacks between plant and soil communities driving plant community development, but it also suggests that the composition of the translocated plant and soil communities, and initial starting conditions, are critical for long‐term restoration success.
Synthesis and applications. Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.
Resumen
Muchos ecosistemas degradados necesitan restauración activa para conservar la biodiversidad y reestablecer las funciones ecosistémicas, objetivos principales del Decenio de las Naciones Unidas sobre la Restauración de los Ecosistemas y de la ley Europea de Restauración de la Naturaleza. La translocación de suelos, en la que se introducen simultáneamente propágulos vegetales y microorganismos del suelo, se ha propuesto cada vez con más fuerza como una técnica efectiva para restaurar ecosistemas terrestres. Sin embargo, falta una síntesis de la eficacia de este método para múltiples ecosistemas.
Para abordar cómo la translocación del suelo afecta el éxito de la restauración, se realizó un metanálisis de 46 experimentos de campo realizados en 17 países de cuatro continentes. En cada experimento, se registró la riqueza y composición de la vegetación en respuesta a los tratamientos de translocación del suelo (incluido el control) y en sus respectivos ecosistemas de referencia.
Nuestros resultados muestran que la translocación del suelo conduce a la comunidad de plantas más lejos del control y más cerca de las comunidades de plantas de referencia en comparación con los tratamientos en los que solo se introdujeron propágulos de plantas. Sin embargo, la variabilidad de los tamaños del efecto entre los experimentos fue grande, lo que sugiere que el éxito de la restauración, entendida como acercamiento a los ecosistemas de referencia, depende del contexto. Así, encontramos que el éxito de la restauración era más probable en suelos arcillosos y cuando los tratamientos de translocación se implementaron en áreas espaciales más grandes (>180 m2).
Además, encontramos una alta direccionalidad en el tiempo en las trayectorias de restauración de cada caso de estudio, muchas de ellas exitosas pero otras no. Esto es congruente con las retroalimentaciones positivas entre las comunidades de plantas y suelos que impulsan el desarrollo de las comunidades de plantas, pero también sugiere que las condiciones iniciales de las comunidades de plantas y de los suelos translocados son críticas para el éxito de la restauración a largo plazo.
Síntesis y aplicaciones. Nuestro análisis sugiere que la translocación del suelo puede ser un método de restauración exitoso en una amplia gama de ecosistemas. Sin embargo, su implementación debe hacerse tras una evaluación exhaustiva de las condiciones locales y el valour añadido potencial. Se necesita un mayor cuidado en la aplicación de las técnicas de translocación del suelo para aumentar las tasas de éxito.
Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.</description><identifier>ISSN: 0021-8901</identifier><identifier>ISSN: 1365-2664</identifier><identifier>EISSN: 1365-2664</identifier><identifier>DOI: 10.1111/1365-2664.14364</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>above‐ground–below‐ground interactions ; Biodiversity ; Biota ; Community development ; Composition ; degraded soils ; Ecological function ; Ecology ; Ecosystem degradation ; Ecosystem restoration ; Ecosystems ; Effectiveness ; Ekologi ; environmental filters ; Environmental restoration ; Environmental Sciences ; Field tests ; Loam ; Meta-analysis ; Plant communities ; Propagules ; restoration thresholds ; Soil analysis ; soil inoculation ; soil transfer ; Soils ; Success ; Synthesis ; Terrestrial ecosystems ; Translocation ; Vegetation</subject><ispartof>The Journal of applied ecology, 2023-04, Vol.60 (4), p.714-724</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4294-31595b202e5e9e972ae3fff3e8ceb2712670504505e7b4b5e15db3d7de7d1bba3</citedby><cites>FETCH-LOGICAL-c4294-31595b202e5e9e972ae3fff3e8ceb2712670504505e7b4b5e15db3d7de7d1bba3</cites><orcidid>0000-0001-7065-3435 ; 0000-0001-8053-945X ; 0000-0001-9461-9215 ; 0000-0003-1104-6365 ; 0000-0001-9714-3566 ; 0000-0002-5432-7872 ; 0000-0002-4245-3150 ; 0000-0002-2315-9677 ; 0000-0001-9130-9414 ; 0000-0002-5874-0138 ; 0000-0003-2149-1438 ; 0000-0002-6515-7864 ; 0000-0001-6970-8304 ; 0000-0002-5930-8785 ; 0000-0002-7312-3605 ; 0000-0002-2925-9222 ; 0000-0002-2709-5308 ; 0000-0002-3640-8134 ; 0000-0001-6556-4446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2664.14364$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2664.14364$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03990633$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/121648$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gerrits, Gijs M.</creatorcontrib><creatorcontrib>Waenink, Rik</creatorcontrib><creatorcontrib>Aradottir, Asa L.</creatorcontrib><creatorcontrib>Buisson, Elise</creatorcontrib><creatorcontrib>Dutoit, Thierry</creatorcontrib><creatorcontrib>Ferreira, Maxmiller C.</creatorcontrib><creatorcontrib>Fontaine, Joseph B.</creatorcontrib><creatorcontrib>Jaunatre, Renaud</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Loeb, Roos</creatorcontrib><creatorcontrib>Magro Ruiz, Sandra</creatorcontrib><creatorcontrib>Maltz, Mia</creatorcontrib><creatorcontrib>Pärtel, Meelis</creatorcontrib><creatorcontrib>Peco, Begona</creatorcontrib><creatorcontrib>Piqueray, Julien</creatorcontrib><creatorcontrib>Pilon, Natashi A. L.</creatorcontrib><creatorcontrib>Santa‐Regina, Ignacio</creatorcontrib><creatorcontrib>Schmidt, Katharina T.</creatorcontrib><creatorcontrib>Sengl, Philip</creatorcontrib><creatorcontrib>Diggelen, Rudy</creatorcontrib><creatorcontrib>Vieira, Daniel L. M.</creatorcontrib><creatorcontrib>Brackel, Wolfgang</creatorcontrib><creatorcontrib>Waryszak, Pawel</creatorcontrib><creatorcontrib>Wills, Tim J.</creatorcontrib><creatorcontrib>Marrs, Rob H.</creatorcontrib><creatorcontrib>Wubs, E. R. Jasper</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Synthesis on the effectiveness of soil translocation for plant community restoration</title><title>The Journal of applied ecology</title><description>Many degraded ecosystems need active restoration to conserve biodiversity and re‐establish ecosystem function, both highlighted targets of the UN Decade on Ecosystem Restoration and the proposed EU Nature restoration law. Soil translocation, where both plant propagules and their associated soil biota are co‐introduced, has increasingly been proposed as a powerful restoration technique for terrestrial ecosystems. However, a synthesis of the effectiveness of this method across ecosystems is lacking.
To address how soil translocation affects restoration success, we performed a meta‐analysis synthesizing data from 46 field experiments and their respective reference ecosystems in 17 countries across four continents. In each experiment, vegetation composition was recorded in response to soil translocation treatments and the resultant vegetational changes (diversity and composition) were quantified.
We found that soil translocation leads to plant community development further away from the control and more towards the reference plant communities compared with treatments where only plant propagules were introduced. However, the variability of effect sizes among experiments was large, suggesting strong dependence of restoration success on restoration context. We found that restoration success was more likely on loamy soils and when translocation treatments were implemented over larger spatial areas (>180 m2).
Furthermore, we found that restoration success either consistently increased or decreased over time depending on the experiment. Not only is this congruent with positive feedbacks between plant and soil communities driving plant community development, but it also suggests that the composition of the translocated plant and soil communities, and initial starting conditions, are critical for long‐term restoration success.
Synthesis and applications. Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.
Resumen
Muchos ecosistemas degradados necesitan restauración activa para conservar la biodiversidad y reestablecer las funciones ecosistémicas, objetivos principales del Decenio de las Naciones Unidas sobre la Restauración de los Ecosistemas y de la ley Europea de Restauración de la Naturaleza. La translocación de suelos, en la que se introducen simultáneamente propágulos vegetales y microorganismos del suelo, se ha propuesto cada vez con más fuerza como una técnica efectiva para restaurar ecosistemas terrestres. Sin embargo, falta una síntesis de la eficacia de este método para múltiples ecosistemas.
Para abordar cómo la translocación del suelo afecta el éxito de la restauración, se realizó un metanálisis de 46 experimentos de campo realizados en 17 países de cuatro continentes. En cada experimento, se registró la riqueza y composición de la vegetación en respuesta a los tratamientos de translocación del suelo (incluido el control) y en sus respectivos ecosistemas de referencia.
Nuestros resultados muestran que la translocación del suelo conduce a la comunidad de plantas más lejos del control y más cerca de las comunidades de plantas de referencia en comparación con los tratamientos en los que solo se introdujeron propágulos de plantas. Sin embargo, la variabilidad de los tamaños del efecto entre los experimentos fue grande, lo que sugiere que el éxito de la restauración, entendida como acercamiento a los ecosistemas de referencia, depende del contexto. Así, encontramos que el éxito de la restauración era más probable en suelos arcillosos y cuando los tratamientos de translocación se implementaron en áreas espaciales más grandes (>180 m2).
Además, encontramos una alta direccionalidad en el tiempo en las trayectorias de restauración de cada caso de estudio, muchas de ellas exitosas pero otras no. Esto es congruente con las retroalimentaciones positivas entre las comunidades de plantas y suelos que impulsan el desarrollo de las comunidades de plantas, pero también sugiere que las condiciones iniciales de las comunidades de plantas y de los suelos translocados son críticas para el éxito de la restauración a largo plazo.
Síntesis y aplicaciones. Nuestro análisis sugiere que la translocación del suelo puede ser un método de restauración exitoso en una amplia gama de ecosistemas. Sin embargo, su implementación debe hacerse tras una evaluación exhaustiva de las condiciones locales y el valour añadido potencial. Se necesita un mayor cuidado en la aplicación de las técnicas de translocación del suelo para aumentar las tasas de éxito.
Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.</description><subject>above‐ground–below‐ground interactions</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Community development</subject><subject>Composition</subject><subject>degraded soils</subject><subject>Ecological function</subject><subject>Ecology</subject><subject>Ecosystem degradation</subject><subject>Ecosystem restoration</subject><subject>Ecosystems</subject><subject>Effectiveness</subject><subject>Ekologi</subject><subject>environmental filters</subject><subject>Environmental restoration</subject><subject>Environmental Sciences</subject><subject>Field tests</subject><subject>Loam</subject><subject>Meta-analysis</subject><subject>Plant communities</subject><subject>Propagules</subject><subject>restoration thresholds</subject><subject>Soil analysis</subject><subject>soil inoculation</subject><subject>soil transfer</subject><subject>Soils</subject><subject>Success</subject><subject>Synthesis</subject><subject>Terrestrial ecosystems</subject><subject>Translocation</subject><subject>Vegetation</subject><issn>0021-8901</issn><issn>1365-2664</issn><issn>1365-2664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>D8T</sourceid><recordid>eNqFkc1Lw0AQxRdRsFbPXgOePKTdz6R7LKVapaBgPS-76SxNSbN1N6n0v3fTSMGTc5nhze8NDA-he4JHJNaYsEykNMv4iHCW8Qs0OCuXaIAxJelEYnKNbkLYYoylYGyAVh_HutlAKEPi6iROCVgLRVMeoIYQRZsEV1ZJ43UdKlfopoycdT7ZV7puksLtdm1dNsfEQ2icP-1v0ZXVVYC73z5En0_z1WyRLt-eX2bTZVpwKnnKiJDCUExBgASZUw3MWstgUoChOaFZjgXmAgvIDTcCiFgbts7XkK-JMZoN0ai_G75h3xq19-VO-6NyulShao32XVMBFKEk45NoeOwNG139oRfTpeo0zKTEGWMHEtmHnt1799XG59TWtb6O_yiaS0Ewl7yjxj1VeBeCB3s-S7DqclFdCqpLQZ1yiQ7RO77LCo7_4er1fd77fgCX3ZAI</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Gerrits, Gijs M.</creator><creator>Waenink, Rik</creator><creator>Aradottir, Asa L.</creator><creator>Buisson, Elise</creator><creator>Dutoit, Thierry</creator><creator>Ferreira, Maxmiller C.</creator><creator>Fontaine, Joseph B.</creator><creator>Jaunatre, Renaud</creator><creator>Kardol, Paul</creator><creator>Loeb, Roos</creator><creator>Magro Ruiz, Sandra</creator><creator>Maltz, Mia</creator><creator>Pärtel, Meelis</creator><creator>Peco, Begona</creator><creator>Piqueray, Julien</creator><creator>Pilon, Natashi A. L.</creator><creator>Santa‐Regina, Ignacio</creator><creator>Schmidt, Katharina T.</creator><creator>Sengl, Philip</creator><creator>Diggelen, Rudy</creator><creator>Vieira, Daniel L. M.</creator><creator>Brackel, Wolfgang</creator><creator>Waryszak, Pawel</creator><creator>Wills, Tim J.</creator><creator>Marrs, Rob H.</creator><creator>Wubs, E. R. Jasper</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0001-8053-945X</orcidid><orcidid>https://orcid.org/0000-0001-9461-9215</orcidid><orcidid>https://orcid.org/0000-0003-1104-6365</orcidid><orcidid>https://orcid.org/0000-0001-9714-3566</orcidid><orcidid>https://orcid.org/0000-0002-5432-7872</orcidid><orcidid>https://orcid.org/0000-0002-4245-3150</orcidid><orcidid>https://orcid.org/0000-0002-2315-9677</orcidid><orcidid>https://orcid.org/0000-0001-9130-9414</orcidid><orcidid>https://orcid.org/0000-0002-5874-0138</orcidid><orcidid>https://orcid.org/0000-0003-2149-1438</orcidid><orcidid>https://orcid.org/0000-0002-6515-7864</orcidid><orcidid>https://orcid.org/0000-0001-6970-8304</orcidid><orcidid>https://orcid.org/0000-0002-5930-8785</orcidid><orcidid>https://orcid.org/0000-0002-7312-3605</orcidid><orcidid>https://orcid.org/0000-0002-2925-9222</orcidid><orcidid>https://orcid.org/0000-0002-2709-5308</orcidid><orcidid>https://orcid.org/0000-0002-3640-8134</orcidid><orcidid>https://orcid.org/0000-0001-6556-4446</orcidid></search><sort><creationdate>202304</creationdate><title>Synthesis on the effectiveness of soil translocation for plant community restoration</title><author>Gerrits, Gijs M. ; Waenink, Rik ; Aradottir, Asa L. ; Buisson, Elise ; Dutoit, Thierry ; Ferreira, Maxmiller C. ; Fontaine, Joseph B. ; Jaunatre, Renaud ; Kardol, Paul ; Loeb, Roos ; Magro Ruiz, Sandra ; Maltz, Mia ; Pärtel, Meelis ; Peco, Begona ; Piqueray, Julien ; Pilon, Natashi A. L. ; Santa‐Regina, Ignacio ; Schmidt, Katharina T. ; Sengl, Philip ; Diggelen, Rudy ; Vieira, Daniel L. M. ; Brackel, Wolfgang ; Waryszak, Pawel ; Wills, Tim J. ; Marrs, Rob H. ; Wubs, E. R. Jasper</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4294-31595b202e5e9e972ae3fff3e8ceb2712670504505e7b4b5e15db3d7de7d1bba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>above‐ground–below‐ground interactions</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Community development</topic><topic>Composition</topic><topic>degraded soils</topic><topic>Ecological function</topic><topic>Ecology</topic><topic>Ecosystem degradation</topic><topic>Ecosystem restoration</topic><topic>Ecosystems</topic><topic>Effectiveness</topic><topic>Ekologi</topic><topic>environmental filters</topic><topic>Environmental restoration</topic><topic>Environmental Sciences</topic><topic>Field tests</topic><topic>Loam</topic><topic>Meta-analysis</topic><topic>Plant communities</topic><topic>Propagules</topic><topic>restoration thresholds</topic><topic>Soil analysis</topic><topic>soil inoculation</topic><topic>soil transfer</topic><topic>Soils</topic><topic>Success</topic><topic>Synthesis</topic><topic>Terrestrial ecosystems</topic><topic>Translocation</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerrits, Gijs M.</creatorcontrib><creatorcontrib>Waenink, Rik</creatorcontrib><creatorcontrib>Aradottir, Asa L.</creatorcontrib><creatorcontrib>Buisson, Elise</creatorcontrib><creatorcontrib>Dutoit, Thierry</creatorcontrib><creatorcontrib>Ferreira, Maxmiller C.</creatorcontrib><creatorcontrib>Fontaine, Joseph B.</creatorcontrib><creatorcontrib>Jaunatre, Renaud</creatorcontrib><creatorcontrib>Kardol, Paul</creatorcontrib><creatorcontrib>Loeb, Roos</creatorcontrib><creatorcontrib>Magro Ruiz, Sandra</creatorcontrib><creatorcontrib>Maltz, Mia</creatorcontrib><creatorcontrib>Pärtel, Meelis</creatorcontrib><creatorcontrib>Peco, Begona</creatorcontrib><creatorcontrib>Piqueray, Julien</creatorcontrib><creatorcontrib>Pilon, Natashi A. L.</creatorcontrib><creatorcontrib>Santa‐Regina, Ignacio</creatorcontrib><creatorcontrib>Schmidt, Katharina T.</creatorcontrib><creatorcontrib>Sengl, Philip</creatorcontrib><creatorcontrib>Diggelen, Rudy</creatorcontrib><creatorcontrib>Vieira, Daniel L. M.</creatorcontrib><creatorcontrib>Brackel, Wolfgang</creatorcontrib><creatorcontrib>Waryszak, Pawel</creatorcontrib><creatorcontrib>Wills, Tim J.</creatorcontrib><creatorcontrib>Marrs, Rob H.</creatorcontrib><creatorcontrib>Wubs, E. R. Jasper</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The Journal of applied ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerrits, Gijs M.</au><au>Waenink, Rik</au><au>Aradottir, Asa L.</au><au>Buisson, Elise</au><au>Dutoit, Thierry</au><au>Ferreira, Maxmiller C.</au><au>Fontaine, Joseph B.</au><au>Jaunatre, Renaud</au><au>Kardol, Paul</au><au>Loeb, Roos</au><au>Magro Ruiz, Sandra</au><au>Maltz, Mia</au><au>Pärtel, Meelis</au><au>Peco, Begona</au><au>Piqueray, Julien</au><au>Pilon, Natashi A. L.</au><au>Santa‐Regina, Ignacio</au><au>Schmidt, Katharina T.</au><au>Sengl, Philip</au><au>Diggelen, Rudy</au><au>Vieira, Daniel L. M.</au><au>Brackel, Wolfgang</au><au>Waryszak, Pawel</au><au>Wills, Tim J.</au><au>Marrs, Rob H.</au><au>Wubs, E. R. Jasper</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis on the effectiveness of soil translocation for plant community restoration</atitle><jtitle>The Journal of applied ecology</jtitle><date>2023-04</date><risdate>2023</risdate><volume>60</volume><issue>4</issue><spage>714</spage><epage>724</epage><pages>714-724</pages><issn>0021-8901</issn><issn>1365-2664</issn><eissn>1365-2664</eissn><abstract>Many degraded ecosystems need active restoration to conserve biodiversity and re‐establish ecosystem function, both highlighted targets of the UN Decade on Ecosystem Restoration and the proposed EU Nature restoration law. Soil translocation, where both plant propagules and their associated soil biota are co‐introduced, has increasingly been proposed as a powerful restoration technique for terrestrial ecosystems. However, a synthesis of the effectiveness of this method across ecosystems is lacking.
To address how soil translocation affects restoration success, we performed a meta‐analysis synthesizing data from 46 field experiments and their respective reference ecosystems in 17 countries across four continents. In each experiment, vegetation composition was recorded in response to soil translocation treatments and the resultant vegetational changes (diversity and composition) were quantified.
We found that soil translocation leads to plant community development further away from the control and more towards the reference plant communities compared with treatments where only plant propagules were introduced. However, the variability of effect sizes among experiments was large, suggesting strong dependence of restoration success on restoration context. We found that restoration success was more likely on loamy soils and when translocation treatments were implemented over larger spatial areas (>180 m2).
Furthermore, we found that restoration success either consistently increased or decreased over time depending on the experiment. Not only is this congruent with positive feedbacks between plant and soil communities driving plant community development, but it also suggests that the composition of the translocated plant and soil communities, and initial starting conditions, are critical for long‐term restoration success.
Synthesis and applications. Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.
Resumen
Muchos ecosistemas degradados necesitan restauración activa para conservar la biodiversidad y reestablecer las funciones ecosistémicas, objetivos principales del Decenio de las Naciones Unidas sobre la Restauración de los Ecosistemas y de la ley Europea de Restauración de la Naturaleza. La translocación de suelos, en la que se introducen simultáneamente propágulos vegetales y microorganismos del suelo, se ha propuesto cada vez con más fuerza como una técnica efectiva para restaurar ecosistemas terrestres. Sin embargo, falta una síntesis de la eficacia de este método para múltiples ecosistemas.
Para abordar cómo la translocación del suelo afecta el éxito de la restauración, se realizó un metanálisis de 46 experimentos de campo realizados en 17 países de cuatro continentes. En cada experimento, se registró la riqueza y composición de la vegetación en respuesta a los tratamientos de translocación del suelo (incluido el control) y en sus respectivos ecosistemas de referencia.
Nuestros resultados muestran que la translocación del suelo conduce a la comunidad de plantas más lejos del control y más cerca de las comunidades de plantas de referencia en comparación con los tratamientos en los que solo se introdujeron propágulos de plantas. Sin embargo, la variabilidad de los tamaños del efecto entre los experimentos fue grande, lo que sugiere que el éxito de la restauración, entendida como acercamiento a los ecosistemas de referencia, depende del contexto. Así, encontramos que el éxito de la restauración era más probable en suelos arcillosos y cuando los tratamientos de translocación se implementaron en áreas espaciales más grandes (>180 m2).
Además, encontramos una alta direccionalidad en el tiempo en las trayectorias de restauración de cada caso de estudio, muchas de ellas exitosas pero otras no. Esto es congruente con las retroalimentaciones positivas entre las comunidades de plantas y suelos que impulsan el desarrollo de las comunidades de plantas, pero también sugiere que las condiciones iniciales de las comunidades de plantas y de los suelos translocados son críticas para el éxito de la restauración a largo plazo.
Síntesis y aplicaciones. Nuestro análisis sugiere que la translocación del suelo puede ser un método de restauración exitoso en una amplia gama de ecosistemas. Sin embargo, su implementación debe hacerse tras una evaluación exhaustiva de las condiciones locales y el valour añadido potencial. Se necesita un mayor cuidado en la aplicación de las técnicas de translocación del suelo para aumentar las tasas de éxito.
Our analysis highlights soil translocation can be a successful restoration method across a broad range of ecosystems. However, its implementation needs to depend on a thorough evaluation of local conditions and the potential added value. Further refinement of soil translocation techniques is needed to increase success rates.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/1365-2664.14364</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7065-3435</orcidid><orcidid>https://orcid.org/0000-0001-8053-945X</orcidid><orcidid>https://orcid.org/0000-0001-9461-9215</orcidid><orcidid>https://orcid.org/0000-0003-1104-6365</orcidid><orcidid>https://orcid.org/0000-0001-9714-3566</orcidid><orcidid>https://orcid.org/0000-0002-5432-7872</orcidid><orcidid>https://orcid.org/0000-0002-4245-3150</orcidid><orcidid>https://orcid.org/0000-0002-2315-9677</orcidid><orcidid>https://orcid.org/0000-0001-9130-9414</orcidid><orcidid>https://orcid.org/0000-0002-5874-0138</orcidid><orcidid>https://orcid.org/0000-0003-2149-1438</orcidid><orcidid>https://orcid.org/0000-0002-6515-7864</orcidid><orcidid>https://orcid.org/0000-0001-6970-8304</orcidid><orcidid>https://orcid.org/0000-0002-5930-8785</orcidid><orcidid>https://orcid.org/0000-0002-7312-3605</orcidid><orcidid>https://orcid.org/0000-0002-2925-9222</orcidid><orcidid>https://orcid.org/0000-0002-2709-5308</orcidid><orcidid>https://orcid.org/0000-0002-3640-8134</orcidid><orcidid>https://orcid.org/0000-0001-6556-4446</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8901 |
ispartof | The Journal of applied ecology, 2023-04, Vol.60 (4), p.714-724 |
issn | 0021-8901 1365-2664 1365-2664 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_121648 |
source | Wiley Online Library Journals Frontfile Complete; SWEPUB Freely available online |
subjects | above‐ground–below‐ground interactions Biodiversity Biota Community development Composition degraded soils Ecological function Ecology Ecosystem degradation Ecosystem restoration Ecosystems Effectiveness Ekologi environmental filters Environmental restoration Environmental Sciences Field tests Loam Meta-analysis Plant communities Propagules restoration thresholds Soil analysis soil inoculation soil transfer Soils Success Synthesis Terrestrial ecosystems Translocation Vegetation |
title | Synthesis on the effectiveness of soil translocation for plant community restoration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20on%20the%20effectiveness%20of%20soil%20translocation%20for%20plant%20community%20restoration&rft.jtitle=The%20Journal%20of%20applied%20ecology&rft.au=Gerrits,%20Gijs%20M.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2023-04&rft.volume=60&rft.issue=4&rft.spage=714&rft.epage=724&rft.pages=714-724&rft.issn=0021-8901&rft.eissn=1365-2664&rft_id=info:doi/10.1111/1365-2664.14364&rft_dat=%3Cproquest_swepu%3E2795104941%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2795104941&rft_id=info:pmid/&rfr_iscdi=true |