Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming

Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2023-03, Vol.29 (6), p.1574-1590
Hauptverfasser: Domeignoz‐Horta, Luiz A., Pold, Grace, Erb, Hailey, Sebag, David, Verrecchia, Eric, Northen, Trent, Louie, Katherine, Eloe‐Fadrosh, Emiley, Pennacchio, Christa, Knorr, Melissa A., Frey, Serita D., Melillo, Jerry M., DeAngelis, Kristen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1590
container_issue 6
container_start_page 1574
container_title Global change biology
container_volume 29
creator Domeignoz‐Horta, Luiz A.
Pold, Grace
Erb, Hailey
Sebag, David
Verrecchia, Eric
Northen, Trent
Louie, Katherine
Eloe‐Fadrosh, Emiley
Pennacchio, Christa
Knorr, Melissa A.
Frey, Serita D.
Melillo, Jerry M.
DeAngelis, Kristen M.
description Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils. Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.
doi_str_mv 10.1111/gcb.16544
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_120086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2775900044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4614-d5cf87d2e37881805a4b00c161689a7068daf83f1a20694e740940fcccac1c8b3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EoqVw4AWQJU49ZGsnjuM9lhW0SCtxoD1bY8fZunLiYDu72gNSH4Fn5ElwSCnigC9j2d988vhH6C0lK5rXxU6rFeU1Y8_QKa14XZRM8OfzvmYFJbQ6Qa9ivCeEVCXhL9FJxRkTomGn6PvXScUUIBkMe7AOlHU2HTEMLR58wunOhB4cBq2d7SFZP2DthxS8i7i3Onhl83Uy_WiyZQoGRzNEm-x-1gQTRz9Eg5PHzg-7nw8_UhbiA4TeDrvX6EUHLpo3j_UM3X76eLO5LrZfrj5vLreFZpyyoq11J5q2NFUjBBWkBqYI0ZRTLtbQEC5a6ETVUcjjrZlpGFkz0mmtQVMtVHWGVos3Hsw4KTmGPEs4Sg9WRjcpCHOR0UhaEiJ4bjhfGu7A_UNfX27lfEZYfkdG9zSz7xd2DP7bZGKS934KQ55Hlk1TrzPG2F9j_rIYg-metJTIOUWZU5S_U8zsu0fjpHrTPpF_YsvAxQIcrDPH_5vk1ebDovwFdwOpng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775900044</pqid></control><display><type>article</type><title>Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>Wiley Online Library All Journals</source><creator>Domeignoz‐Horta, Luiz A. ; Pold, Grace ; Erb, Hailey ; Sebag, David ; Verrecchia, Eric ; Northen, Trent ; Louie, Katherine ; Eloe‐Fadrosh, Emiley ; Pennacchio, Christa ; Knorr, Melissa A. ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M.</creator><creatorcontrib>Domeignoz‐Horta, Luiz A. ; Pold, Grace ; Erb, Hailey ; Sebag, David ; Verrecchia, Eric ; Northen, Trent ; Louie, Katherine ; Eloe‐Fadrosh, Emiley ; Pennacchio, Christa ; Knorr, Melissa A. ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M. ; Sveriges lantbruksuniversitet</creatorcontrib><description>Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils. Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.16544</identifier><identifier>PMID: 36448874</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acclimation ; Acclimatization ; Availability ; Biochemistry, Molecular Biology ; Carbon ; Carbon - metabolism ; Carbon cycle ; carbon use efficiency ; Chemical activity ; Chemical composition ; Climate change ; Climate Research ; Cycles ; Dissolved organic matter ; Enzymatic activity ; Enzyme activity ; Klimatforskning ; Life Sciences ; Markvetenskap ; Metabolism ; microbial temperature sensitivity ; microbial thermal acclimation ; Microorganisms ; Organic soils ; Physiology ; Respiration ; Sensitivity ; Soil ; Soil - chemistry ; soil carbon cycling ; Soil Microbiology ; Soil organic matter ; Soil quality ; Soil Science ; Soil temperature ; Soils ; Stocks ; Substrates ; Temperature</subject><ispartof>Global change biology, 2023-03, Vol.29 (6), p.1574-1590</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022 The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4614-d5cf87d2e37881805a4b00c161689a7068daf83f1a20694e740940fcccac1c8b3</citedby><cites>FETCH-LOGICAL-c4614-d5cf87d2e37881805a4b00c161689a7068daf83f1a20694e740940fcccac1c8b3</cites><orcidid>0000-0003-3729-5634 ; 0000-0002-6787-7558 ; 0000-0002-5585-4551 ; 0000-0003-4418-4246 ; 0000-0002-9221-5919 ; 0000-0002-8162-1276 ; 0000-0002-6446-6921 ; 0000-0003-4618-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.16544$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.16544$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36448874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://ifp.hal.science/hal-04180008$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/120086$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Domeignoz‐Horta, Luiz A.</creatorcontrib><creatorcontrib>Pold, Grace</creatorcontrib><creatorcontrib>Erb, Hailey</creatorcontrib><creatorcontrib>Sebag, David</creatorcontrib><creatorcontrib>Verrecchia, Eric</creatorcontrib><creatorcontrib>Northen, Trent</creatorcontrib><creatorcontrib>Louie, Katherine</creatorcontrib><creatorcontrib>Eloe‐Fadrosh, Emiley</creatorcontrib><creatorcontrib>Pennacchio, Christa</creatorcontrib><creatorcontrib>Knorr, Melissa A.</creatorcontrib><creatorcontrib>Frey, Serita D.</creatorcontrib><creatorcontrib>Melillo, Jerry M.</creatorcontrib><creatorcontrib>DeAngelis, Kristen M.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils. Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Availability</subject><subject>Biochemistry, Molecular Biology</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon cycle</subject><subject>carbon use efficiency</subject><subject>Chemical activity</subject><subject>Chemical composition</subject><subject>Climate change</subject><subject>Climate Research</subject><subject>Cycles</subject><subject>Dissolved organic matter</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Klimatforskning</subject><subject>Life Sciences</subject><subject>Markvetenskap</subject><subject>Metabolism</subject><subject>microbial temperature sensitivity</subject><subject>microbial thermal acclimation</subject><subject>Microorganisms</subject><subject>Organic soils</subject><subject>Physiology</subject><subject>Respiration</subject><subject>Sensitivity</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>soil carbon cycling</subject><subject>Soil Microbiology</subject><subject>Soil organic matter</subject><subject>Soil quality</subject><subject>Soil Science</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Stocks</subject><subject>Substrates</subject><subject>Temperature</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kcFu1DAQhi0EoqVw4AWQJU49ZGsnjuM9lhW0SCtxoD1bY8fZunLiYDu72gNSH4Fn5ElwSCnigC9j2d988vhH6C0lK5rXxU6rFeU1Y8_QKa14XZRM8OfzvmYFJbQ6Qa9ivCeEVCXhL9FJxRkTomGn6PvXScUUIBkMe7AOlHU2HTEMLR58wunOhB4cBq2d7SFZP2DthxS8i7i3Onhl83Uy_WiyZQoGRzNEm-x-1gQTRz9Eg5PHzg-7nw8_UhbiA4TeDrvX6EUHLpo3j_UM3X76eLO5LrZfrj5vLreFZpyyoq11J5q2NFUjBBWkBqYI0ZRTLtbQEC5a6ETVUcjjrZlpGFkz0mmtQVMtVHWGVos3Hsw4KTmGPEs4Sg9WRjcpCHOR0UhaEiJ4bjhfGu7A_UNfX27lfEZYfkdG9zSz7xd2DP7bZGKS934KQ55Hlk1TrzPG2F9j_rIYg-metJTIOUWZU5S_U8zsu0fjpHrTPpF_YsvAxQIcrDPH_5vk1ebDovwFdwOpng</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Domeignoz‐Horta, Luiz A.</creator><creator>Pold, Grace</creator><creator>Erb, Hailey</creator><creator>Sebag, David</creator><creator>Verrecchia, Eric</creator><creator>Northen, Trent</creator><creator>Louie, Katherine</creator><creator>Eloe‐Fadrosh, Emiley</creator><creator>Pennacchio, Christa</creator><creator>Knorr, Melissa A.</creator><creator>Frey, Serita D.</creator><creator>Melillo, Jerry M.</creator><creator>DeAngelis, Kristen M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3729-5634</orcidid><orcidid>https://orcid.org/0000-0002-6787-7558</orcidid><orcidid>https://orcid.org/0000-0002-5585-4551</orcidid><orcidid>https://orcid.org/0000-0003-4418-4246</orcidid><orcidid>https://orcid.org/0000-0002-9221-5919</orcidid><orcidid>https://orcid.org/0000-0002-8162-1276</orcidid><orcidid>https://orcid.org/0000-0002-6446-6921</orcidid><orcidid>https://orcid.org/0000-0003-4618-6253</orcidid></search><sort><creationdate>202303</creationdate><title>Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming</title><author>Domeignoz‐Horta, Luiz A. ; Pold, Grace ; Erb, Hailey ; Sebag, David ; Verrecchia, Eric ; Northen, Trent ; Louie, Katherine ; Eloe‐Fadrosh, Emiley ; Pennacchio, Christa ; Knorr, Melissa A. ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4614-d5cf87d2e37881805a4b00c161689a7068daf83f1a20694e740940fcccac1c8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Availability</topic><topic>Biochemistry, Molecular Biology</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon cycle</topic><topic>carbon use efficiency</topic><topic>Chemical activity</topic><topic>Chemical composition</topic><topic>Climate change</topic><topic>Climate Research</topic><topic>Cycles</topic><topic>Dissolved organic matter</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Klimatforskning</topic><topic>Life Sciences</topic><topic>Markvetenskap</topic><topic>Metabolism</topic><topic>microbial temperature sensitivity</topic><topic>microbial thermal acclimation</topic><topic>Microorganisms</topic><topic>Organic soils</topic><topic>Physiology</topic><topic>Respiration</topic><topic>Sensitivity</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>soil carbon cycling</topic><topic>Soil Microbiology</topic><topic>Soil organic matter</topic><topic>Soil quality</topic><topic>Soil Science</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Stocks</topic><topic>Substrates</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domeignoz‐Horta, Luiz A.</creatorcontrib><creatorcontrib>Pold, Grace</creatorcontrib><creatorcontrib>Erb, Hailey</creatorcontrib><creatorcontrib>Sebag, David</creatorcontrib><creatorcontrib>Verrecchia, Eric</creatorcontrib><creatorcontrib>Northen, Trent</creatorcontrib><creatorcontrib>Louie, Katherine</creatorcontrib><creatorcontrib>Eloe‐Fadrosh, Emiley</creatorcontrib><creatorcontrib>Pennacchio, Christa</creatorcontrib><creatorcontrib>Knorr, Melissa A.</creatorcontrib><creatorcontrib>Frey, Serita D.</creatorcontrib><creatorcontrib>Melillo, Jerry M.</creatorcontrib><creatorcontrib>DeAngelis, Kristen M.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domeignoz‐Horta, Luiz A.</au><au>Pold, Grace</au><au>Erb, Hailey</au><au>Sebag, David</au><au>Verrecchia, Eric</au><au>Northen, Trent</au><au>Louie, Katherine</au><au>Eloe‐Fadrosh, Emiley</au><au>Pennacchio, Christa</au><au>Knorr, Melissa A.</au><au>Frey, Serita D.</au><au>Melillo, Jerry M.</au><au>DeAngelis, Kristen M.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2023-03</date><risdate>2023</risdate><volume>29</volume><issue>6</issue><spage>1574</spage><epage>1590</epage><pages>1574-1590</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils. Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>36448874</pmid><doi>10.1111/gcb.16544</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3729-5634</orcidid><orcidid>https://orcid.org/0000-0002-6787-7558</orcidid><orcidid>https://orcid.org/0000-0002-5585-4551</orcidid><orcidid>https://orcid.org/0000-0003-4418-4246</orcidid><orcidid>https://orcid.org/0000-0002-9221-5919</orcidid><orcidid>https://orcid.org/0000-0002-8162-1276</orcidid><orcidid>https://orcid.org/0000-0002-6446-6921</orcidid><orcidid>https://orcid.org/0000-0003-4618-6253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2023-03, Vol.29 (6), p.1574-1590
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_120086
source MEDLINE; SWEPUB Freely available online; Wiley Online Library All Journals
subjects Acclimation
Acclimatization
Availability
Biochemistry, Molecular Biology
Carbon
Carbon - metabolism
Carbon cycle
carbon use efficiency
Chemical activity
Chemical composition
Climate change
Climate Research
Cycles
Dissolved organic matter
Enzymatic activity
Enzyme activity
Klimatforskning
Life Sciences
Markvetenskap
Metabolism
microbial temperature sensitivity
microbial thermal acclimation
Microorganisms
Organic soils
Physiology
Respiration
Sensitivity
Soil
Soil - chemistry
soil carbon cycling
Soil Microbiology
Soil organic matter
Soil quality
Soil Science
Soil temperature
Soils
Stocks
Substrates
Temperature
title Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20availability%20and%20not%20thermal%20acclimation%20controls%20microbial%20temperature%20sensitivity%20response%20to%20long%E2%80%90term%20warming&rft.jtitle=Global%20change%20biology&rft.au=Domeignoz%E2%80%90Horta,%20Luiz%20A.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2023-03&rft.volume=29&rft.issue=6&rft.spage=1574&rft.epage=1590&rft.pages=1574-1590&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.16544&rft_dat=%3Cproquest_swepu%3E2775900044%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775900044&rft_id=info:pmid/36448874&rfr_iscdi=true