Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types

Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2022-02, Vol.165, p.108530, Article 108530
Hauptverfasser: Gavazov, Konstantin, Canarini, Alberto, Jassey, Vincent E.J., Mills, Robert, Richter, Andreas, Sundqvist, Maja K., Väisänen, Maria, Walker, Tom W.N., Wardle, David A., Dorrepaal, Ellen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108530
container_title Soil biology & biochemistry
container_volume 165
creator Gavazov, Konstantin
Canarini, Alberto
Jassey, Vincent E.J.
Mills, Robert
Richter, Andreas
Sundqvist, Maja K.
Väisänen, Maria
Walker, Tom W.N.
Wardle, David A.
Dorrepaal, Ellen
description Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes. [Display omitted] •A mechanistic field experiment testing above- and belowssground linkages in tundra.•Tundra vegetation types determine belowground ecosystem composition and functioning.•Photosynthetic inputs drive soil microbial biomass and physiology via CN stoichiometry.•Fungal dominance in tundra soils boosts microbial carbon use efficiency and turnover.•Tundra vegetation as a consistent proxy to soil carbon and nitrogen fluxes and stocks.
doi_str_mv 10.1016/j.soilbio.2021.108530
format Article
fullrecord <record><control><sourceid>hal_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_116854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038071721004041</els_id><sourcerecordid>oai_HAL_hal_03792891v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-30c2ef4e9656679e9dd6fd9603b7dbf749813057571a64875b6bb72bdae9a7183</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVJoZs0H6Hgaw_eSpatP6eybJpsYSE5NLkKyR5vtfVKG0nest8-Mg6FHEpOwzx-bxjeQ-gLwUuCCfu2X0ZvB2P9ssIVyZpoKP6AFkRwWdK6EhdogTEVJeaEf0KXMe4xxlVD6AL1D4N2qTzYNnhj9VAM1v3RO4jF6DoIR-uKVgfjXRHheYSYgk42b5PuXd5ism5XHPzoks5iyragixPsIM1kOh8hfkYfez1EuH6dV-jx9sev9abc3t_9XK-2ZVsznkqK2wr6GiRrGOMSZNexvpMMU8M70_NaCkJxwxtONKsFbwwzhlem0yA1J4JeoeV8N_6F42jUMdiDDmfltVVxGI0O01ARFCFMNHU2lP813NinlfJhp8bDqIjE-avMf53533p4A29WWzVpmHJZCUlOJLPNzOZsYwzQ_zMQrKbm1F69Nqem5tTcXPZ9n32QkzpZyD-3FlwLnQ3QJtV5-86FFzZ0p3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types</title><source>SWEPUB Freely available online</source><source>Access via ScienceDirect (Elsevier)</source><creator>Gavazov, Konstantin ; Canarini, Alberto ; Jassey, Vincent E.J. ; Mills, Robert ; Richter, Andreas ; Sundqvist, Maja K. ; Väisänen, Maria ; Walker, Tom W.N. ; Wardle, David A. ; Dorrepaal, Ellen</creator><creatorcontrib>Gavazov, Konstantin ; Canarini, Alberto ; Jassey, Vincent E.J. ; Mills, Robert ; Richter, Andreas ; Sundqvist, Maja K. ; Väisänen, Maria ; Walker, Tom W.N. ; Wardle, David A. ; Dorrepaal, Ellen ; Sveriges lantbruksuniversitet</creatorcontrib><description>Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes. [Display omitted] •A mechanistic field experiment testing above- and belowssground linkages in tundra.•Tundra vegetation types determine belowground ecosystem composition and functioning.•Photosynthetic inputs drive soil microbial biomass and physiology via CN stoichiometry.•Fungal dominance in tundra soils boosts microbial carbon use efficiency and turnover.•Tundra vegetation as a consistent proxy to soil carbon and nitrogen fluxes and stocks.</description><identifier>ISSN: 0038-0717</identifier><identifier>ISSN: 1879-3428</identifier><identifier>EISSN: 1879-3428</identifier><identifier>DOI: 10.1016/j.soilbio.2021.108530</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Above- and belowground interactions ; C:N stoichiometry ; Carbon use efficiency ; Elevation gradient ; Life Sciences ; Markvetenskap ; Microbial physiology ; Primary productivity ; Soil Science</subject><ispartof>Soil biology &amp; biochemistry, 2022-02, Vol.165, p.108530, Article 108530</ispartof><rights>2021 The Authors</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-30c2ef4e9656679e9dd6fd9603b7dbf749813057571a64875b6bb72bdae9a7183</citedby><cites>FETCH-LOGICAL-c467t-30c2ef4e9656679e9dd6fd9603b7dbf749813057571a64875b6bb72bdae9a7183</cites><orcidid>0000-0001-9055-8443 ; 0000-0003-2516-5955 ; 0000-0003-4479-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.soilbio.2021.108530$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03792891$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-190965$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/116854$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gavazov, Konstantin</creatorcontrib><creatorcontrib>Canarini, Alberto</creatorcontrib><creatorcontrib>Jassey, Vincent E.J.</creatorcontrib><creatorcontrib>Mills, Robert</creatorcontrib><creatorcontrib>Richter, Andreas</creatorcontrib><creatorcontrib>Sundqvist, Maja K.</creatorcontrib><creatorcontrib>Väisänen, Maria</creatorcontrib><creatorcontrib>Walker, Tom W.N.</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Dorrepaal, Ellen</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types</title><title>Soil biology &amp; biochemistry</title><description>Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes. [Display omitted] •A mechanistic field experiment testing above- and belowssground linkages in tundra.•Tundra vegetation types determine belowground ecosystem composition and functioning.•Photosynthetic inputs drive soil microbial biomass and physiology via CN stoichiometry.•Fungal dominance in tundra soils boosts microbial carbon use efficiency and turnover.•Tundra vegetation as a consistent proxy to soil carbon and nitrogen fluxes and stocks.</description><subject>Above- and belowground interactions</subject><subject>C:N stoichiometry</subject><subject>Carbon use efficiency</subject><subject>Elevation gradient</subject><subject>Life Sciences</subject><subject>Markvetenskap</subject><subject>Microbial physiology</subject><subject>Primary productivity</subject><subject>Soil Science</subject><issn>0038-0717</issn><issn>1879-3428</issn><issn>1879-3428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNqFkU9r3DAQxUVJoZs0H6Hgaw_eSpatP6eybJpsYSE5NLkKyR5vtfVKG0nest8-Mg6FHEpOwzx-bxjeQ-gLwUuCCfu2X0ZvB2P9ssIVyZpoKP6AFkRwWdK6EhdogTEVJeaEf0KXMe4xxlVD6AL1D4N2qTzYNnhj9VAM1v3RO4jF6DoIR-uKVgfjXRHheYSYgk42b5PuXd5ism5XHPzoks5iyragixPsIM1kOh8hfkYfez1EuH6dV-jx9sev9abc3t_9XK-2ZVsznkqK2wr6GiRrGOMSZNexvpMMU8M70_NaCkJxwxtONKsFbwwzhlem0yA1J4JeoeV8N_6F42jUMdiDDmfltVVxGI0O01ARFCFMNHU2lP813NinlfJhp8bDqIjE-avMf53533p4A29WWzVpmHJZCUlOJLPNzOZsYwzQ_zMQrKbm1F69Nqem5tTcXPZ9n32QkzpZyD-3FlwLnQ3QJtV5-86FFzZ0p3A</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Gavazov, Konstantin</creator><creator>Canarini, Alberto</creator><creator>Jassey, Vincent E.J.</creator><creator>Mills, Robert</creator><creator>Richter, Andreas</creator><creator>Sundqvist, Maja K.</creator><creator>Väisänen, Maria</creator><creator>Walker, Tom W.N.</creator><creator>Wardle, David A.</creator><creator>Dorrepaal, Ellen</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-9055-8443</orcidid><orcidid>https://orcid.org/0000-0003-2516-5955</orcidid><orcidid>https://orcid.org/0000-0003-4479-7202</orcidid></search><sort><creationdate>20220201</creationdate><title>Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types</title><author>Gavazov, Konstantin ; Canarini, Alberto ; Jassey, Vincent E.J. ; Mills, Robert ; Richter, Andreas ; Sundqvist, Maja K. ; Väisänen, Maria ; Walker, Tom W.N. ; Wardle, David A. ; Dorrepaal, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-30c2ef4e9656679e9dd6fd9603b7dbf749813057571a64875b6bb72bdae9a7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Above- and belowground interactions</topic><topic>C:N stoichiometry</topic><topic>Carbon use efficiency</topic><topic>Elevation gradient</topic><topic>Life Sciences</topic><topic>Markvetenskap</topic><topic>Microbial physiology</topic><topic>Primary productivity</topic><topic>Soil Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavazov, Konstantin</creatorcontrib><creatorcontrib>Canarini, Alberto</creatorcontrib><creatorcontrib>Jassey, Vincent E.J.</creatorcontrib><creatorcontrib>Mills, Robert</creatorcontrib><creatorcontrib>Richter, Andreas</creatorcontrib><creatorcontrib>Sundqvist, Maja K.</creatorcontrib><creatorcontrib>Väisänen, Maria</creatorcontrib><creatorcontrib>Walker, Tom W.N.</creatorcontrib><creatorcontrib>Wardle, David A.</creatorcontrib><creatorcontrib>Dorrepaal, Ellen</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Soil biology &amp; biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavazov, Konstantin</au><au>Canarini, Alberto</au><au>Jassey, Vincent E.J.</au><au>Mills, Robert</au><au>Richter, Andreas</au><au>Sundqvist, Maja K.</au><au>Väisänen, Maria</au><au>Walker, Tom W.N.</au><au>Wardle, David A.</au><au>Dorrepaal, Ellen</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types</atitle><jtitle>Soil biology &amp; biochemistry</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>165</volume><spage>108530</spage><pages>108530-</pages><artnum>108530</artnum><issn>0038-0717</issn><issn>1879-3428</issn><eissn>1879-3428</eissn><abstract>Tundra ecosystems hold large stocks of soil organic matter (SOM), likely due to low temperatures limiting rates of microbial SOM decomposition more than those of SOM accumulation from plant primary productivity and microbial necromass inputs. Here we test the hypotheses that distinct tundra vegetation types and their carbon supply to characteristic rhizosphere microbes determine SOM cycling independent of temperature. In the subarctic Scandes, we used a three-way factorial design with paired heath and meadow vegetation at each of two elevations, and with each combination of vegetation type and elevation subjected during one growing season to either ambient light (i.e., ambient plant productivity), or 95% shading (i.e., reduced plant productivity). We assessed potential above- and belowground ecosystem linkages by uni- and multivariate analyses of variance, and structural equation modelling. We observed direct coupling between tundra vegetation type and microbial community composition and function, which underpinned the ecosystem's potential for SOM storage. Greater primary productivity at low elevation and ambient light supported higher microbial biomass and nitrogen immobilisation, with lower microbial mass-specific enzymatic activity and SOM humification. Congruently, larger SOM at lower elevation and in heath sustained fungal-dominated microbial communities, which were less substrate-limited, and invested less into enzymatic SOM mineralisation, owing to a greater carbon-use efficiency (CUE). Our results highlight the importance of tundra plant community characteristics (i.e., productivity and vegetation type), via their effects on soil microbial community size, structure and physiology, as essential drivers of SOM turnover. The here documented concerted patterns in above- and belowground ecosystem functioning is strongly supportive of using plant community characteristics as surrogates for assessing tundra carbon storage potential and its evolution under climate and vegetation changes. [Display omitted] •A mechanistic field experiment testing above- and belowssground linkages in tundra.•Tundra vegetation types determine belowground ecosystem composition and functioning.•Photosynthetic inputs drive soil microbial biomass and physiology via CN stoichiometry.•Fungal dominance in tundra soils boosts microbial carbon use efficiency and turnover.•Tundra vegetation as a consistent proxy to soil carbon and nitrogen fluxes and stocks.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.soilbio.2021.108530</doi><orcidid>https://orcid.org/0000-0001-9055-8443</orcidid><orcidid>https://orcid.org/0000-0003-2516-5955</orcidid><orcidid>https://orcid.org/0000-0003-4479-7202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-0717
ispartof Soil biology & biochemistry, 2022-02, Vol.165, p.108530, Article 108530
issn 0038-0717
1879-3428
1879-3428
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_116854
source SWEPUB Freely available online; Access via ScienceDirect (Elsevier)
subjects Above- and belowground interactions
C:N stoichiometry
Carbon use efficiency
Elevation gradient
Life Sciences
Markvetenskap
Microbial physiology
Primary productivity
Soil Science
title Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T14%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant-microbial%20linkages%20underpin%20carbon%20sequestration%20in%20contrasting%20mountain%20tundra%20vegetation%20types&rft.jtitle=Soil%20biology%20&%20biochemistry&rft.au=Gavazov,%20Konstantin&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2022-02-01&rft.volume=165&rft.spage=108530&rft.pages=108530-&rft.artnum=108530&rft.issn=0038-0717&rft.eissn=1879-3428&rft_id=info:doi/10.1016/j.soilbio.2021.108530&rft_dat=%3Chal_swepu%3Eoai_HAL_hal_03792891v1%3C/hal_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0038071721004041&rfr_iscdi=true