Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress

Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Sorghum is an economically import...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2022-01, Vol.255 (1), p.20-20, Article 20
Hauptverfasser: Abreha, Kibrom B., Enyew, Muluken, Carlsson, Anders S., Vetukuri, Ramesh R., Feyissa, Tileye, Motlhaodi, Tiny, Ng’uni, Dickson, Geleta, Mulatu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 20
container_title Planta
container_volume 255
creator Abreha, Kibrom B.
Enyew, Muluken
Carlsson, Anders S.
Vetukuri, Ramesh R.
Feyissa, Tileye
Motlhaodi, Tiny
Ng’uni, Dickson
Geleta, Mulatu
description Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.
doi_str_mv 10.1007/s00425-021-03799-7
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_114917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609456366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c628t-852e7a3bcfe1b88abc1b0f69d1134bbf312c979f1b4764439b638503bdb91b663</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EosPAH2CBIrHpghS_4geLSlXFo1IlFsDash3nUSVx8E1A8-_xdIY-WLCyrfud43vvQeg1wWcEY_keMOa0KjElJWZS61I-QRvCGS0p5uop2mCc71iz6gS9ALjBOBelfI5OGFeaUyU2qP8WU9utY9FPRZ12g53qD8UY09zFIba9t8O7Yu520N8_M5KJIfh1sKlIAeY4QYAiNgUczdapDin7xbXtlgKWDMFL9KyxA4RXx3OLfnz6-P3yS3n99fPV5cV16QVVS6kqGqRlzjeBOKWs88ThRuiaEMadaxihXkvdEMel4JxpJ5iqMHO108QJwbbo7OALv8O8OjOnfrRpZ6LtDQyrs2l_GAiGEK6JzILzgyDTY6h9mJZkh0e6x5Wp70wbfxklRKUpzganR4MUf64BFjP24MOQlxniCoYKrHkl2G1zb_9Bb-KapryPPaV0xaqc0RbRA-VTBEihuWuGYLOP3hyiNzl6cxu92Y_x5uEYd5K_WWeAHReTS1Mb0v3f_7H9AyA-vMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608953514</pqid></control><display><type>article</type><title>Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress</title><source>MEDLINE</source><source>SWEPUB Freely available online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Abreha, Kibrom B. ; Enyew, Muluken ; Carlsson, Anders S. ; Vetukuri, Ramesh R. ; Feyissa, Tileye ; Motlhaodi, Tiny ; Ng’uni, Dickson ; Geleta, Mulatu</creator><creatorcontrib>Abreha, Kibrom B. ; Enyew, Muluken ; Carlsson, Anders S. ; Vetukuri, Ramesh R. ; Feyissa, Tileye ; Motlhaodi, Tiny ; Ng’uni, Dickson ; Geleta, Mulatu ; Sveriges lantbruksuniversitet</creatorcontrib><description>Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.</description><identifier>ISSN: 0032-0935</identifier><identifier>ISSN: 1432-2048</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-021-03799-7</identifier><identifier>PMID: 34894286</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural Science ; Agriculture ; Arid lands ; Arid regions ; Arid zones ; Biomedical and Life Sciences ; Biotic factors ; Breeding methods ; Crop yield ; Crops ; Cultivars ; Developing countries ; Drought ; Drought resistance ; Droughts ; Ecology ; Economic importance ; Edible Grain ; Embryogenesis ; Forestry ; Gene Expression Regulation, Plant ; Genotypes ; Germination ; Germplasm ; Jordbruksvetenskap ; LDCs ; Life Sciences ; Morphology ; Nutritive value ; Osmotic potential ; Photosynthesis ; Physiology ; Plant Breeding ; Plant Sciences ; Productivity ; Review ; Semi arid areas ; Semiarid lands ; Sorghum ; Sorghum - genetics</subject><ispartof>Planta, 2022-01, Vol.255 (1), p.20-20, Article 20</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c628t-852e7a3bcfe1b88abc1b0f69d1134bbf312c979f1b4764439b638503bdb91b663</citedby><cites>FETCH-LOGICAL-c628t-852e7a3bcfe1b88abc1b0f69d1134bbf312c979f1b4764439b638503bdb91b663</cites><orcidid>0000-0001-8084-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00425-021-03799-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00425-021-03799-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,553,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34894286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/114917$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Abreha, Kibrom B.</creatorcontrib><creatorcontrib>Enyew, Muluken</creatorcontrib><creatorcontrib>Carlsson, Anders S.</creatorcontrib><creatorcontrib>Vetukuri, Ramesh R.</creatorcontrib><creatorcontrib>Feyissa, Tileye</creatorcontrib><creatorcontrib>Motlhaodi, Tiny</creatorcontrib><creatorcontrib>Ng’uni, Dickson</creatorcontrib><creatorcontrib>Geleta, Mulatu</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.</description><subject>Agricultural Science</subject><subject>Agriculture</subject><subject>Arid lands</subject><subject>Arid regions</subject><subject>Arid zones</subject><subject>Biomedical and Life Sciences</subject><subject>Biotic factors</subject><subject>Breeding methods</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Cultivars</subject><subject>Developing countries</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Economic importance</subject><subject>Edible Grain</subject><subject>Embryogenesis</subject><subject>Forestry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Germplasm</subject><subject>Jordbruksvetenskap</subject><subject>LDCs</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Nutritive value</subject><subject>Osmotic potential</subject><subject>Photosynthesis</subject><subject>Physiology</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Productivity</subject><subject>Review</subject><subject>Semi arid areas</subject><subject>Semiarid lands</subject><subject>Sorghum</subject><subject>Sorghum - genetics</subject><issn>0032-0935</issn><issn>1432-2048</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp9kUtv1DAUhS0EosPAH2CBIrHpghS_4geLSlXFo1IlFsDash3nUSVx8E1A8-_xdIY-WLCyrfud43vvQeg1wWcEY_keMOa0KjElJWZS61I-QRvCGS0p5uop2mCc71iz6gS9ALjBOBelfI5OGFeaUyU2qP8WU9utY9FPRZ12g53qD8UY09zFIba9t8O7Yu520N8_M5KJIfh1sKlIAeY4QYAiNgUczdapDin7xbXtlgKWDMFL9KyxA4RXx3OLfnz6-P3yS3n99fPV5cV16QVVS6kqGqRlzjeBOKWs88ThRuiaEMadaxihXkvdEMel4JxpJ5iqMHO108QJwbbo7OALv8O8OjOnfrRpZ6LtDQyrs2l_GAiGEK6JzILzgyDTY6h9mJZkh0e6x5Wp70wbfxklRKUpzganR4MUf64BFjP24MOQlxniCoYKrHkl2G1zb_9Bb-KapryPPaV0xaqc0RbRA-VTBEihuWuGYLOP3hyiNzl6cxu92Y_x5uEYd5K_WWeAHReTS1Mb0v3f_7H9AyA-vMc</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Abreha, Kibrom B.</creator><creator>Enyew, Muluken</creator><creator>Carlsson, Anders S.</creator><creator>Vetukuri, Ramesh R.</creator><creator>Feyissa, Tileye</creator><creator>Motlhaodi, Tiny</creator><creator>Ng’uni, Dickson</creator><creator>Geleta, Mulatu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-8084-8340</orcidid></search><sort><creationdate>20220101</creationdate><title>Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress</title><author>Abreha, Kibrom B. ; Enyew, Muluken ; Carlsson, Anders S. ; Vetukuri, Ramesh R. ; Feyissa, Tileye ; Motlhaodi, Tiny ; Ng’uni, Dickson ; Geleta, Mulatu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c628t-852e7a3bcfe1b88abc1b0f69d1134bbf312c979f1b4764439b638503bdb91b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural Science</topic><topic>Agriculture</topic><topic>Arid lands</topic><topic>Arid regions</topic><topic>Arid zones</topic><topic>Biomedical and Life Sciences</topic><topic>Biotic factors</topic><topic>Breeding methods</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Cultivars</topic><topic>Developing countries</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Economic importance</topic><topic>Edible Grain</topic><topic>Embryogenesis</topic><topic>Forestry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Germplasm</topic><topic>Jordbruksvetenskap</topic><topic>LDCs</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Nutritive value</topic><topic>Osmotic potential</topic><topic>Photosynthesis</topic><topic>Physiology</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Productivity</topic><topic>Review</topic><topic>Semi arid areas</topic><topic>Semiarid lands</topic><topic>Sorghum</topic><topic>Sorghum - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abreha, Kibrom B.</creatorcontrib><creatorcontrib>Enyew, Muluken</creatorcontrib><creatorcontrib>Carlsson, Anders S.</creatorcontrib><creatorcontrib>Vetukuri, Ramesh R.</creatorcontrib><creatorcontrib>Feyissa, Tileye</creatorcontrib><creatorcontrib>Motlhaodi, Tiny</creatorcontrib><creatorcontrib>Ng’uni, Dickson</creatorcontrib><creatorcontrib>Geleta, Mulatu</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abreha, Kibrom B.</au><au>Enyew, Muluken</au><au>Carlsson, Anders S.</au><au>Vetukuri, Ramesh R.</au><au>Feyissa, Tileye</au><au>Motlhaodi, Tiny</au><au>Ng’uni, Dickson</au><au>Geleta, Mulatu</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>255</volume><issue>1</issue><spage>20</spage><epage>20</epage><pages>20-20</pages><artnum>20</artnum><issn>0032-0935</issn><issn>1432-2048</issn><eissn>1432-2048</eissn><abstract>Main conclusion Droughts negatively affect sorghum’s productivity and nutritional quality. Across its diversity centers, however, there exist resilient genotypes that function differently under drought stress at various levels, including molecular and physiological. Sorghum is an economically important and a staple food crop for over half a billion people in developing countries, mostly in arid and semi-arid regions where drought stress is a major limiting factor. Although sorghum is generally considered tolerant, drought stress still significantly hampers its productivity and nutritional quality across its major cultivation areas. Hence, understanding both the effects of the stress and plant response is indispensable for improving drought tolerance of the crop. This review aimed at enhancing our understanding and provide more insights on drought tolerance in sorghum as a contribution to the development of climate resilient sorghum cultivars. We summarized findings on the effects of drought on the growth and development of sorghum including osmotic potential that impedes germination process and embryonic structures, photosynthetic rates, and imbalance in source-sink relations that in turn affect seed filling often manifested in the form of substantial reduction in grain yield and quality. Mechanisms of sorghum response to drought-stress involving morphological, physiological, and molecular alterations are presented. We highlighted the current understanding about the genetic basis of drought tolerance in sorghum, which is important for maximizing utilization of its germplasm for development of improved cultivars. Furthermore, we discussed interactions of drought with other abiotic stresses and biotic factors, which may increase the vulnerability of the crop or enhance its tolerance to drought stress. Based on the research reviewed in this article, it appears possible to develop locally adapted cultivars of sorghum that are drought tolerant and nutrient rich using modern plant breeding techniques.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34894286</pmid><doi>10.1007/s00425-021-03799-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8084-8340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2022-01, Vol.255 (1), p.20-20, Article 20
issn 0032-0935
1432-2048
1432-2048
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_114917
source MEDLINE; SWEPUB Freely available online; SpringerLink Journals - AutoHoldings
subjects Agricultural Science
Agriculture
Arid lands
Arid regions
Arid zones
Biomedical and Life Sciences
Biotic factors
Breeding methods
Crop yield
Crops
Cultivars
Developing countries
Drought
Drought resistance
Droughts
Ecology
Economic importance
Edible Grain
Embryogenesis
Forestry
Gene Expression Regulation, Plant
Genotypes
Germination
Germplasm
Jordbruksvetenskap
LDCs
Life Sciences
Morphology
Nutritive value
Osmotic potential
Photosynthesis
Physiology
Plant Breeding
Plant Sciences
Productivity
Review
Semi arid areas
Semiarid lands
Sorghum
Sorghum - genetics
title Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorghum%20in%20dryland:%20morphological,%20physiological,%20and%20molecular%20responses%20of%20sorghum%20under%20drought%20stress&rft.jtitle=Planta&rft.au=Abreha,%20Kibrom%20B.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2022-01-01&rft.volume=255&rft.issue=1&rft.spage=20&rft.epage=20&rft.pages=20-20&rft.artnum=20&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-021-03799-7&rft_dat=%3Cproquest_swepu%3E2609456366%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608953514&rft_id=info:pmid/34894286&rfr_iscdi=true