Specific shifts in the endocannabinoid system in hibernating brown bears
In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brow...
Gespeichert in:
Veröffentlicht in: | Frontiers in zoology 2020-11, Vol.17 (1), p.1-35, Article 35 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Frontiers in zoology |
container_volume | 17 |
creator | Boyer, Christian Cussonneau, Laura Brun, Charlotte Deval, Christiane Pais de Barros, Jean-Paul Chanon, Stéphanie Bernoud-Hubac, Nathalie Daira, Patricia Evans, Alina L Arnemo, Jon M Swenson, Jon E Gauquelin-Koch, Guillemette Simon, Chantal Blanc, Stéphane Combaret, Lydie Bertile, Fabrice Lefai, Etienne |
description | In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment. |
doi_str_mv | 10.1186/s12983-020-00380-y |
format | Article |
fullrecord | <record><control><sourceid>gale_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_109382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650662809</galeid><sourcerecordid>A650662809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c683t-a64524ec15c109193005845ad84247628f952bd1c60fea039644a858ba117c453</originalsourceid><addsrcrecordid>eNp1kt9r1EAQx4Motj39B3wK-GKR1P2dzYtwHOoVDgVb8XHZbCaXLcnumU1a77_vxpRqCrILs8x8vrMzwyTJG4wuMJbiQ8CkkDRDBGUIUYmy47PkFOeMZEVRsOf_vE-SsxBuIsTifZmcUEoKQhE5TbZXBzC2tiYNja2HkFqXDg2k4CpvtHO6tM7bKg3HMEA3RRtbQu_0YN0-LXt_59ISdB9eJS9q3QZ4_WBXyY_Pn64322z37cvlZr3LjJB0yLRgnDAwmBuMClxQhLhkXFeSEZYLIuuCk7LCRqAaNKKFYExLLkuNcW4Yp6vkYs4b7uAwlurQ2073R-W1VaEdS91PRgVQMT-VJAo-zoJId1AZcEOv24VuGXG2UXt_q3IhcRGLXiXnc4LmiWy73qnJhyjijMv8Fkf23cNnvf81QhhUZ4OBttUO_BgUYUKKnCPMIvr2CXrjxzjYdqLy2C0RjP6l9roFZV3tY41mSqrWgiMRJxbbfBzKgoqngs4a76C20b8QnC8EkRng97DXYwjq8ur7kn3_f3Z9_XPzdUmTmTa9D6GH-nFkGKlpbdW8tiqurfqztupI7wGspNo7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471172643</pqid></control><display><type>article</type><title>Specific shifts in the endocannabinoid system in hibernating brown bears</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Boyer, Christian ; Cussonneau, Laura ; Brun, Charlotte ; Deval, Christiane ; Pais de Barros, Jean-Paul ; Chanon, Stéphanie ; Bernoud-Hubac, Nathalie ; Daira, Patricia ; Evans, Alina L ; Arnemo, Jon M ; Swenson, Jon E ; Gauquelin-Koch, Guillemette ; Simon, Chantal ; Blanc, Stéphane ; Combaret, Lydie ; Bertile, Fabrice ; Lefai, Etienne</creator><creatorcontrib>Boyer, Christian ; Cussonneau, Laura ; Brun, Charlotte ; Deval, Christiane ; Pais de Barros, Jean-Paul ; Chanon, Stéphanie ; Bernoud-Hubac, Nathalie ; Daira, Patricia ; Evans, Alina L ; Arnemo, Jon M ; Swenson, Jon E ; Gauquelin-Koch, Guillemette ; Simon, Chantal ; Blanc, Stéphane ; Combaret, Lydie ; Bertile, Fabrice ; Lefai, Etienne ; Sveriges lantbruksuniversitet</creatorcontrib><description>In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.</description><identifier>ISSN: 1742-9994</identifier><identifier>EISSN: 1742-9994</identifier><identifier>DOI: 10.1186/s12983-020-00380-y</identifier><identifier>PMID: 33292302</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>2-Arachidonoylglycerol ; Adipose tissue ; Animal biology ; Arachidonic acid ; Arousal ; Bears ; Behavior ; Body fat ; Brown bear ; Cannabinoid CB1 receptors ; Cannabinoid CB2 receptors ; Carbohydrate metabolism ; Circannual rhythms ; Docosahexaenoic acid ; Endocannabinoid system ; Endocannabinoids ; Energy metabolism ; Environmental effects ; Enzymes ; Fatty acids ; Feeding behavior ; Gene expression ; Glucose ; Hibernation ; Hypothermia ; Insulin ; Life Sciences ; Lipid metabolism ; Lipids ; Lipolysis ; Metabolism ; mRNA ; Musculoskeletal system ; Oleic acid ; Oxidation ; Physiological aspects ; Physiology ; Skeletal muscle ; Torpor ; Ursus arctos ; Vertebrate Zoology ; Winter ; Zoologi ; Zoology</subject><ispartof>Frontiers in zoology, 2020-11, Vol.17 (1), p.1-35, Article 35</ispartof><rights>COPYRIGHT 2020 BioMed Central Ltd.</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c683t-a64524ec15c109193005845ad84247628f952bd1c60fea039644a858ba117c453</citedby><cites>FETCH-LOGICAL-c683t-a64524ec15c109193005845ad84247628f952bd1c60fea039644a858ba117c453</cites><orcidid>0000-0002-3042-7801 ; 0000-0001-8009-5983 ; 0000-0002-3412-0989 ; 0000-0001-6550-8700 ; 0000-0001-5510-4868 ; 0000-0001-6930-6671 ; 0000-0002-7820-3233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7681968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03054587$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/109382$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Boyer, Christian</creatorcontrib><creatorcontrib>Cussonneau, Laura</creatorcontrib><creatorcontrib>Brun, Charlotte</creatorcontrib><creatorcontrib>Deval, Christiane</creatorcontrib><creatorcontrib>Pais de Barros, Jean-Paul</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Bernoud-Hubac, Nathalie</creatorcontrib><creatorcontrib>Daira, Patricia</creatorcontrib><creatorcontrib>Evans, Alina L</creatorcontrib><creatorcontrib>Arnemo, Jon M</creatorcontrib><creatorcontrib>Swenson, Jon E</creatorcontrib><creatorcontrib>Gauquelin-Koch, Guillemette</creatorcontrib><creatorcontrib>Simon, Chantal</creatorcontrib><creatorcontrib>Blanc, Stéphane</creatorcontrib><creatorcontrib>Combaret, Lydie</creatorcontrib><creatorcontrib>Bertile, Fabrice</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Specific shifts in the endocannabinoid system in hibernating brown bears</title><title>Frontiers in zoology</title><description>In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.</description><subject>2-Arachidonoylglycerol</subject><subject>Adipose tissue</subject><subject>Animal biology</subject><subject>Arachidonic acid</subject><subject>Arousal</subject><subject>Bears</subject><subject>Behavior</subject><subject>Body fat</subject><subject>Brown bear</subject><subject>Cannabinoid CB1 receptors</subject><subject>Cannabinoid CB2 receptors</subject><subject>Carbohydrate metabolism</subject><subject>Circannual rhythms</subject><subject>Docosahexaenoic acid</subject><subject>Endocannabinoid system</subject><subject>Endocannabinoids</subject><subject>Energy metabolism</subject><subject>Environmental effects</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Feeding behavior</subject><subject>Gene expression</subject><subject>Glucose</subject><subject>Hibernation</subject><subject>Hypothermia</subject><subject>Insulin</subject><subject>Life Sciences</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Lipolysis</subject><subject>Metabolism</subject><subject>mRNA</subject><subject>Musculoskeletal system</subject><subject>Oleic acid</subject><subject>Oxidation</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Skeletal muscle</subject><subject>Torpor</subject><subject>Ursus arctos</subject><subject>Vertebrate Zoology</subject><subject>Winter</subject><subject>Zoologi</subject><subject>Zoology</subject><issn>1742-9994</issn><issn>1742-9994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>D8T</sourceid><recordid>eNp1kt9r1EAQx4Motj39B3wK-GKR1P2dzYtwHOoVDgVb8XHZbCaXLcnumU1a77_vxpRqCrILs8x8vrMzwyTJG4wuMJbiQ8CkkDRDBGUIUYmy47PkFOeMZEVRsOf_vE-SsxBuIsTifZmcUEoKQhE5TbZXBzC2tiYNja2HkFqXDg2k4CpvtHO6tM7bKg3HMEA3RRtbQu_0YN0-LXt_59ISdB9eJS9q3QZ4_WBXyY_Pn64322z37cvlZr3LjJB0yLRgnDAwmBuMClxQhLhkXFeSEZYLIuuCk7LCRqAaNKKFYExLLkuNcW4Yp6vkYs4b7uAwlurQ2073R-W1VaEdS91PRgVQMT-VJAo-zoJId1AZcEOv24VuGXG2UXt_q3IhcRGLXiXnc4LmiWy73qnJhyjijMv8Fkf23cNnvf81QhhUZ4OBttUO_BgUYUKKnCPMIvr2CXrjxzjYdqLy2C0RjP6l9roFZV3tY41mSqrWgiMRJxbbfBzKgoqngs4a76C20b8QnC8EkRng97DXYwjq8ur7kn3_f3Z9_XPzdUmTmTa9D6GH-nFkGKlpbdW8tiqurfqztupI7wGspNo7</recordid><startdate>20201123</startdate><enddate>20201123</enddate><creator>Boyer, Christian</creator><creator>Cussonneau, Laura</creator><creator>Brun, Charlotte</creator><creator>Deval, Christiane</creator><creator>Pais de Barros, Jean-Paul</creator><creator>Chanon, Stéphanie</creator><creator>Bernoud-Hubac, Nathalie</creator><creator>Daira, Patricia</creator><creator>Evans, Alina L</creator><creator>Arnemo, Jon M</creator><creator>Swenson, Jon E</creator><creator>Gauquelin-Koch, Guillemette</creator><creator>Simon, Chantal</creator><creator>Blanc, Stéphane</creator><creator>Combaret, Lydie</creator><creator>Bertile, Fabrice</creator><creator>Lefai, Etienne</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7SS</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0001-8009-5983</orcidid><orcidid>https://orcid.org/0000-0002-3412-0989</orcidid><orcidid>https://orcid.org/0000-0001-6550-8700</orcidid><orcidid>https://orcid.org/0000-0001-5510-4868</orcidid><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-7820-3233</orcidid></search><sort><creationdate>20201123</creationdate><title>Specific shifts in the endocannabinoid system in hibernating brown bears</title><author>Boyer, Christian ; Cussonneau, Laura ; Brun, Charlotte ; Deval, Christiane ; Pais de Barros, Jean-Paul ; Chanon, Stéphanie ; Bernoud-Hubac, Nathalie ; Daira, Patricia ; Evans, Alina L ; Arnemo, Jon M ; Swenson, Jon E ; Gauquelin-Koch, Guillemette ; Simon, Chantal ; Blanc, Stéphane ; Combaret, Lydie ; Bertile, Fabrice ; Lefai, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c683t-a64524ec15c109193005845ad84247628f952bd1c60fea039644a858ba117c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-Arachidonoylglycerol</topic><topic>Adipose tissue</topic><topic>Animal biology</topic><topic>Arachidonic acid</topic><topic>Arousal</topic><topic>Bears</topic><topic>Behavior</topic><topic>Body fat</topic><topic>Brown bear</topic><topic>Cannabinoid CB1 receptors</topic><topic>Cannabinoid CB2 receptors</topic><topic>Carbohydrate metabolism</topic><topic>Circannual rhythms</topic><topic>Docosahexaenoic acid</topic><topic>Endocannabinoid system</topic><topic>Endocannabinoids</topic><topic>Energy metabolism</topic><topic>Environmental effects</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Feeding behavior</topic><topic>Gene expression</topic><topic>Glucose</topic><topic>Hibernation</topic><topic>Hypothermia</topic><topic>Insulin</topic><topic>Life Sciences</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Lipolysis</topic><topic>Metabolism</topic><topic>mRNA</topic><topic>Musculoskeletal system</topic><topic>Oleic acid</topic><topic>Oxidation</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Skeletal muscle</topic><topic>Torpor</topic><topic>Ursus arctos</topic><topic>Vertebrate Zoology</topic><topic>Winter</topic><topic>Zoologi</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyer, Christian</creatorcontrib><creatorcontrib>Cussonneau, Laura</creatorcontrib><creatorcontrib>Brun, Charlotte</creatorcontrib><creatorcontrib>Deval, Christiane</creatorcontrib><creatorcontrib>Pais de Barros, Jean-Paul</creatorcontrib><creatorcontrib>Chanon, Stéphanie</creatorcontrib><creatorcontrib>Bernoud-Hubac, Nathalie</creatorcontrib><creatorcontrib>Daira, Patricia</creatorcontrib><creatorcontrib>Evans, Alina L</creatorcontrib><creatorcontrib>Arnemo, Jon M</creatorcontrib><creatorcontrib>Swenson, Jon E</creatorcontrib><creatorcontrib>Gauquelin-Koch, Guillemette</creatorcontrib><creatorcontrib>Simon, Chantal</creatorcontrib><creatorcontrib>Blanc, Stéphane</creatorcontrib><creatorcontrib>Combaret, Lydie</creatorcontrib><creatorcontrib>Bertile, Fabrice</creatorcontrib><creatorcontrib>Lefai, Etienne</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Frontiers in zoology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyer, Christian</au><au>Cussonneau, Laura</au><au>Brun, Charlotte</au><au>Deval, Christiane</au><au>Pais de Barros, Jean-Paul</au><au>Chanon, Stéphanie</au><au>Bernoud-Hubac, Nathalie</au><au>Daira, Patricia</au><au>Evans, Alina L</au><au>Arnemo, Jon M</au><au>Swenson, Jon E</au><au>Gauquelin-Koch, Guillemette</au><au>Simon, Chantal</au><au>Blanc, Stéphane</au><au>Combaret, Lydie</au><au>Bertile, Fabrice</au><au>Lefai, Etienne</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Specific shifts in the endocannabinoid system in hibernating brown bears</atitle><jtitle>Frontiers in zoology</jtitle><date>2020-11-23</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>35</artnum><issn>1742-9994</issn><eissn>1742-9994</eissn><abstract>In small hibernators, global downregulation of the endocannabinoid system (ECS), which is involved in modulating neuronal signaling, feeding behavior, energy metabolism, and circannual rhythms, has been reported to possibly drive physiological adaptation to the hibernating state. In hibernating brown bears (Ursus arctos), we hypothesized that beyond an overall suppression of the ECS, seasonal shift in endocannabinoids compounds could be linked to bear's peculiar features that include hibernation without arousal episodes and capacity to react to external disturbance. We explored circulating lipids in serum and the ECS in plasma and metabolically active tissues in free-ranging subadult Scandinavian brown bears when both active and hibernating. In winter bear serum, in addition to a 2-fold increase in total fatty acid concentration, we found significant changes in relative proportions of circulating fatty acids, such as a 2-fold increase in docosahexaenoic acid C22:6 n-3 and a decrease in arachidonic acid C20:4 n-6. In adipose and muscle tissues of hibernating bears, we found significant lower concentrations of 2-arachidonoylglycerol (2-AG), a major ligand of cannabinoid receptors 1 (CB1) and 2 (CB2). Lower mRNA level for genes encoding CB1 and CB2 were also found in winter muscle and adipose tissue, respectively. The observed reduction in ECS tone may promote fatty acid mobilization from body fat stores, and favor carbohydrate metabolism in skeletal muscle of hibernating bears. Additionally, high circulating level of the endocannabinoid-like compound N-oleoylethanolamide (OEA) in winter could favor lipolysis and fatty acid oxidation in peripheral tissues. We also speculated on a role of OEA in the conservation of an anorexigenic signal and in the maintenance of torpor during hibernation, while sustaining the capacity of bears to sense stimuli from the environment.</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>33292302</pmid><doi>10.1186/s12983-020-00380-y</doi><orcidid>https://orcid.org/0000-0002-3042-7801</orcidid><orcidid>https://orcid.org/0000-0001-8009-5983</orcidid><orcidid>https://orcid.org/0000-0002-3412-0989</orcidid><orcidid>https://orcid.org/0000-0001-6550-8700</orcidid><orcidid>https://orcid.org/0000-0001-5510-4868</orcidid><orcidid>https://orcid.org/0000-0001-6930-6671</orcidid><orcidid>https://orcid.org/0000-0002-7820-3233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-9994 |
ispartof | Frontiers in zoology, 2020-11, Vol.17 (1), p.1-35, Article 35 |
issn | 1742-9994 1742-9994 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_109382 |
source | DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central |
subjects | 2-Arachidonoylglycerol Adipose tissue Animal biology Arachidonic acid Arousal Bears Behavior Body fat Brown bear Cannabinoid CB1 receptors Cannabinoid CB2 receptors Carbohydrate metabolism Circannual rhythms Docosahexaenoic acid Endocannabinoid system Endocannabinoids Energy metabolism Environmental effects Enzymes Fatty acids Feeding behavior Gene expression Glucose Hibernation Hypothermia Insulin Life Sciences Lipid metabolism Lipids Lipolysis Metabolism mRNA Musculoskeletal system Oleic acid Oxidation Physiological aspects Physiology Skeletal muscle Torpor Ursus arctos Vertebrate Zoology Winter Zoologi Zoology |
title | Specific shifts in the endocannabinoid system in hibernating brown bears |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Specific%20shifts%20in%20the%20endocannabinoid%20system%20in%20hibernating%20brown%20bears&rft.jtitle=Frontiers%20in%20zoology&rft.au=Boyer,%20Christian&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-11-23&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=35&rft.issn=1742-9994&rft.eissn=1742-9994&rft_id=info:doi/10.1186/s12983-020-00380-y&rft_dat=%3Cgale_swepu%3EA650662809%3C/gale_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471172643&rft_id=info:pmid/33292302&rft_galeid=A650662809&rfr_iscdi=true |