A framework for modelling soil structure dynamics induced by biological activity

Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2020-10, Vol.26 (10), p.5382-5403
Hauptverfasser: Meurer, Katharina, Barron, Jennie, Chenu, Claire, Coucheney, Elsa, Fielding, Matthew, Hallett, Paul, Herrmann, Anke M., Keller, Thomas, Koestel, John, Larsbo, Mats, Lewan, Elisabet, Or, Dani, Parsons, David, Parvin, Nargish, Taylor, Astrid, Vereecken, Harry, Jarvis, Nicholas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5403
container_issue 10
container_start_page 5382
container_title Global change biology
container_volume 26
creator Meurer, Katharina
Barron, Jennie
Chenu, Claire
Coucheney, Elsa
Fielding, Matthew
Hallett, Paul
Herrmann, Anke M.
Keller, Thomas
Koestel, John
Larsbo, Mats
Lewan, Elisabet
Or, Dani
Parsons, David
Parvin, Nargish
Taylor, Astrid
Vereecken, Harry
Jarvis, Nicholas
description Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil. This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.
doi_str_mv 10.1111/gcb.15289
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_107789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444793970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNERR-w4A8gS6xYZOpXbGeDNB31gTRSWXRv-ZWpixMXO5lR_j1JUwpFwl5c6_qcz1c-RfERwRWa1vnO6BWqsKjfFCeIsKrEVLC387miJYKIHBenOT9ACAmG7F1xTDCrMSXVSfF9DZqkWneI6QdoYgJttC4E3-1Ajj6A3KfB9ENywI6dar3JwHd2MM4CPQLtY4g7b1QAyvR-7_vxfXHUqJDdh-d6VtxdXd5tbsrt7fW3zXpbmgqxuuRac4u0VkxgYZRuqILUKSg0JcxQrmuONSFY2IY5Mm3MBdaVdQoxiyw5K1YLNh_c46DlY_KtSqOMysscBq3SXGR2EkHORT0Zvi6GSd06a1zXJxVe-V7fdP5e7uJe8orUNZ0BXxbA_T-2m_VWzj1IkKiYEHs0aT8_P5biz8HlXj7EIXXTf0hMKeU1qTn8QzQp5pxc84JFUM7ByilY-RTspP309_gvyt9JToLzRXDwwY3_J8nrzcWC_AX6IK6t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444793970</pqid></control><display><type>article</type><title>A framework for modelling soil structure dynamics induced by biological activity</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas</creator><creatorcontrib>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas ; Sveriges lantbruksuniversitet</creatorcontrib><description>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil. This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15289</identifier><identifier>PMID: 32692435</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Agricultural sciences ; Agriculture ; Animals ; Biodegradation ; Biological activity ; biological processes ; Biological weapons ; Bioturbation ; Case studies ; Climate change ; Compacted soils ; Compaction ; degradation ; Depletion ; Dynamics ; Economic conditions ; Economics ; Environmental degradation ; Freeze-thawing ; Hydrology ; Land management ; Life Sciences ; Markvetenskap ; Microorganisms ; Modelling ; Nutrients ; Oligochaeta ; Organic matter ; Plant growth ; Plant roots ; Plants ; Research Review ; Soil ; Soil compaction ; Soil degradation ; Soil dynamics ; Soil erosion ; Soil fauna ; Soil microorganisms ; Soil profiles ; Soil properties ; Soil Science ; Soil shrinkage ; Soil structure ; Soil study ; structure ; Tillage</subject><ispartof>Global change biology, 2020-10, Vol.26 (10), p.5382-5403</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd</rights><rights>2020 The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</citedby><cites>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</cites><orcidid>0000-0001-6725-6762 ; 0000-0002-6273-1234 ; 0000-0002-8880-9650 ; 0000-0001-9054-0489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32692435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03185688$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/107789$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Meurer, Katharina</creatorcontrib><creatorcontrib>Barron, Jennie</creatorcontrib><creatorcontrib>Chenu, Claire</creatorcontrib><creatorcontrib>Coucheney, Elsa</creatorcontrib><creatorcontrib>Fielding, Matthew</creatorcontrib><creatorcontrib>Hallett, Paul</creatorcontrib><creatorcontrib>Herrmann, Anke M.</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Koestel, John</creatorcontrib><creatorcontrib>Larsbo, Mats</creatorcontrib><creatorcontrib>Lewan, Elisabet</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Parvin, Nargish</creatorcontrib><creatorcontrib>Taylor, Astrid</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><creatorcontrib>Jarvis, Nicholas</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>A framework for modelling soil structure dynamics induced by biological activity</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil. This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</description><subject>Agricultural sciences</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>biological processes</subject><subject>Biological weapons</subject><subject>Bioturbation</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Compacted soils</subject><subject>Compaction</subject><subject>degradation</subject><subject>Depletion</subject><subject>Dynamics</subject><subject>Economic conditions</subject><subject>Economics</subject><subject>Environmental degradation</subject><subject>Freeze-thawing</subject><subject>Hydrology</subject><subject>Land management</subject><subject>Life Sciences</subject><subject>Markvetenskap</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Nutrients</subject><subject>Oligochaeta</subject><subject>Organic matter</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Research Review</subject><subject>Soil</subject><subject>Soil compaction</subject><subject>Soil degradation</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil fauna</subject><subject>Soil microorganisms</subject><subject>Soil profiles</subject><subject>Soil properties</subject><subject>Soil Science</subject><subject>Soil shrinkage</subject><subject>Soil structure</subject><subject>Soil study</subject><subject>structure</subject><subject>Tillage</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kUtv1DAUhSNERR-w4A8gS6xYZOpXbGeDNB31gTRSWXRv-ZWpixMXO5lR_j1JUwpFwl5c6_qcz1c-RfERwRWa1vnO6BWqsKjfFCeIsKrEVLC387miJYKIHBenOT9ACAmG7F1xTDCrMSXVSfF9DZqkWneI6QdoYgJttC4E3-1Ajj6A3KfB9ENywI6dar3JwHd2MM4CPQLtY4g7b1QAyvR-7_vxfXHUqJDdh-d6VtxdXd5tbsrt7fW3zXpbmgqxuuRac4u0VkxgYZRuqILUKSg0JcxQrmuONSFY2IY5Mm3MBdaVdQoxiyw5K1YLNh_c46DlY_KtSqOMysscBq3SXGR2EkHORT0Zvi6GSd06a1zXJxVe-V7fdP5e7uJe8orUNZ0BXxbA_T-2m_VWzj1IkKiYEHs0aT8_P5biz8HlXj7EIXXTf0hMKeU1qTn8QzQp5pxc84JFUM7ByilY-RTspP309_gvyt9JToLzRXDwwY3_J8nrzcWC_AX6IK6t</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Meurer, Katharina</creator><creator>Barron, Jennie</creator><creator>Chenu, Claire</creator><creator>Coucheney, Elsa</creator><creator>Fielding, Matthew</creator><creator>Hallett, Paul</creator><creator>Herrmann, Anke M.</creator><creator>Keller, Thomas</creator><creator>Koestel, John</creator><creator>Larsbo, Mats</creator><creator>Lewan, Elisabet</creator><creator>Or, Dani</creator><creator>Parsons, David</creator><creator>Parvin, Nargish</creator><creator>Taylor, Astrid</creator><creator>Vereecken, Harry</creator><creator>Jarvis, Nicholas</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6725-6762</orcidid><orcidid>https://orcid.org/0000-0002-6273-1234</orcidid><orcidid>https://orcid.org/0000-0002-8880-9650</orcidid><orcidid>https://orcid.org/0000-0001-9054-0489</orcidid></search><sort><creationdate>202010</creationdate><title>A framework for modelling soil structure dynamics induced by biological activity</title><author>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural sciences</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>biological processes</topic><topic>Biological weapons</topic><topic>Bioturbation</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Compacted soils</topic><topic>Compaction</topic><topic>degradation</topic><topic>Depletion</topic><topic>Dynamics</topic><topic>Economic conditions</topic><topic>Economics</topic><topic>Environmental degradation</topic><topic>Freeze-thawing</topic><topic>Hydrology</topic><topic>Land management</topic><topic>Life Sciences</topic><topic>Markvetenskap</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Nutrients</topic><topic>Oligochaeta</topic><topic>Organic matter</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Research Review</topic><topic>Soil</topic><topic>Soil compaction</topic><topic>Soil degradation</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil fauna</topic><topic>Soil microorganisms</topic><topic>Soil profiles</topic><topic>Soil properties</topic><topic>Soil Science</topic><topic>Soil shrinkage</topic><topic>Soil structure</topic><topic>Soil study</topic><topic>structure</topic><topic>Tillage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meurer, Katharina</creatorcontrib><creatorcontrib>Barron, Jennie</creatorcontrib><creatorcontrib>Chenu, Claire</creatorcontrib><creatorcontrib>Coucheney, Elsa</creatorcontrib><creatorcontrib>Fielding, Matthew</creatorcontrib><creatorcontrib>Hallett, Paul</creatorcontrib><creatorcontrib>Herrmann, Anke M.</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Koestel, John</creatorcontrib><creatorcontrib>Larsbo, Mats</creatorcontrib><creatorcontrib>Lewan, Elisabet</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Parvin, Nargish</creatorcontrib><creatorcontrib>Taylor, Astrid</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><creatorcontrib>Jarvis, Nicholas</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meurer, Katharina</au><au>Barron, Jennie</au><au>Chenu, Claire</au><au>Coucheney, Elsa</au><au>Fielding, Matthew</au><au>Hallett, Paul</au><au>Herrmann, Anke M.</au><au>Keller, Thomas</au><au>Koestel, John</au><au>Larsbo, Mats</au><au>Lewan, Elisabet</au><au>Or, Dani</au><au>Parsons, David</au><au>Parvin, Nargish</au><au>Taylor, Astrid</au><au>Vereecken, Harry</au><au>Jarvis, Nicholas</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for modelling soil structure dynamics induced by biological activity</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>26</volume><issue>10</issue><spage>5382</spage><epage>5403</epage><pages>5382-5403</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil. This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32692435</pmid><doi>10.1111/gcb.15289</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6725-6762</orcidid><orcidid>https://orcid.org/0000-0002-6273-1234</orcidid><orcidid>https://orcid.org/0000-0002-8880-9650</orcidid><orcidid>https://orcid.org/0000-0001-9054-0489</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2020-10, Vol.26 (10), p.5382-5403
issn 1354-1013
1365-2486
1365-2486
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_107789
source Wiley Online Library - AutoHoldings Journals; MEDLINE; SWEPUB Freely available online
subjects Agricultural sciences
Agriculture
Animals
Biodegradation
Biological activity
biological processes
Biological weapons
Bioturbation
Case studies
Climate change
Compacted soils
Compaction
degradation
Depletion
Dynamics
Economic conditions
Economics
Environmental degradation
Freeze-thawing
Hydrology
Land management
Life Sciences
Markvetenskap
Microorganisms
Modelling
Nutrients
Oligochaeta
Organic matter
Plant growth
Plant roots
Plants
Research Review
Soil
Soil compaction
Soil degradation
Soil dynamics
Soil erosion
Soil fauna
Soil microorganisms
Soil profiles
Soil properties
Soil Science
Soil shrinkage
Soil structure
Soil study
structure
Tillage
title A framework for modelling soil structure dynamics induced by biological activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20modelling%20soil%20structure%20dynamics%20induced%20by%20biological%20activity&rft.jtitle=Global%20change%20biology&rft.au=Meurer,%20Katharina&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-10&rft.volume=26&rft.issue=10&rft.spage=5382&rft.epage=5403&rft.pages=5382-5403&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15289&rft_dat=%3Cproquest_swepu%3E2444793970%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444793970&rft_id=info:pmid/32692435&rfr_iscdi=true