A framework for modelling soil structure dynamics induced by biological activity
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrie...
Gespeichert in:
Veröffentlicht in: | Global change biology 2020-10, Vol.26 (10), p.5382-5403 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5403 |
---|---|
container_issue | 10 |
container_start_page | 5382 |
container_title | Global change biology |
container_volume | 26 |
creator | Meurer, Katharina Barron, Jennie Chenu, Claire Coucheney, Elsa Fielding, Matthew Hallett, Paul Herrmann, Anke M. Keller, Thomas Koestel, John Larsbo, Mats Lewan, Elisabet Or, Dani Parsons, David Parvin, Nargish Taylor, Astrid Vereecken, Harry Jarvis, Nicholas |
description | Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.
This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics. |
doi_str_mv | 10.1111/gcb.15289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_107789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444793970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSNERR-w4A8gS6xYZOpXbGeDNB31gTRSWXRv-ZWpixMXO5lR_j1JUwpFwl5c6_qcz1c-RfERwRWa1vnO6BWqsKjfFCeIsKrEVLC387miJYKIHBenOT9ACAmG7F1xTDCrMSXVSfF9DZqkWneI6QdoYgJttC4E3-1Ajj6A3KfB9ENywI6dar3JwHd2MM4CPQLtY4g7b1QAyvR-7_vxfXHUqJDdh-d6VtxdXd5tbsrt7fW3zXpbmgqxuuRac4u0VkxgYZRuqILUKSg0JcxQrmuONSFY2IY5Mm3MBdaVdQoxiyw5K1YLNh_c46DlY_KtSqOMysscBq3SXGR2EkHORT0Zvi6GSd06a1zXJxVe-V7fdP5e7uJe8orUNZ0BXxbA_T-2m_VWzj1IkKiYEHs0aT8_P5biz8HlXj7EIXXTf0hMKeU1qTn8QzQp5pxc84JFUM7ByilY-RTspP309_gvyt9JToLzRXDwwY3_J8nrzcWC_AX6IK6t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444793970</pqid></control><display><type>article</type><title>A framework for modelling soil structure dynamics induced by biological activity</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>SWEPUB Freely available online</source><creator>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas</creator><creatorcontrib>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas ; Sveriges lantbruksuniversitet</creatorcontrib><description>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.
This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</description><identifier>ISSN: 1354-1013</identifier><identifier>ISSN: 1365-2486</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15289</identifier><identifier>PMID: 32692435</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Agricultural sciences ; Agriculture ; Animals ; Biodegradation ; Biological activity ; biological processes ; Biological weapons ; Bioturbation ; Case studies ; Climate change ; Compacted soils ; Compaction ; degradation ; Depletion ; Dynamics ; Economic conditions ; Economics ; Environmental degradation ; Freeze-thawing ; Hydrology ; Land management ; Life Sciences ; Markvetenskap ; Microorganisms ; Modelling ; Nutrients ; Oligochaeta ; Organic matter ; Plant growth ; Plant roots ; Plants ; Research Review ; Soil ; Soil compaction ; Soil degradation ; Soil dynamics ; Soil erosion ; Soil fauna ; Soil microorganisms ; Soil profiles ; Soil properties ; Soil Science ; Soil shrinkage ; Soil structure ; Soil study ; structure ; Tillage</subject><ispartof>Global change biology, 2020-10, Vol.26 (10), p.5382-5403</ispartof><rights>2020 The Authors. published by John Wiley & Sons Ltd</rights><rights>2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Oct 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</citedby><cites>FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</cites><orcidid>0000-0001-6725-6762 ; 0000-0002-6273-1234 ; 0000-0002-8880-9650 ; 0000-0001-9054-0489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.15289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.15289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32692435$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03185688$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/107789$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Meurer, Katharina</creatorcontrib><creatorcontrib>Barron, Jennie</creatorcontrib><creatorcontrib>Chenu, Claire</creatorcontrib><creatorcontrib>Coucheney, Elsa</creatorcontrib><creatorcontrib>Fielding, Matthew</creatorcontrib><creatorcontrib>Hallett, Paul</creatorcontrib><creatorcontrib>Herrmann, Anke M.</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Koestel, John</creatorcontrib><creatorcontrib>Larsbo, Mats</creatorcontrib><creatorcontrib>Lewan, Elisabet</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Parvin, Nargish</creatorcontrib><creatorcontrib>Taylor, Astrid</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><creatorcontrib>Jarvis, Nicholas</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>A framework for modelling soil structure dynamics induced by biological activity</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.
This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</description><subject>Agricultural sciences</subject><subject>Agriculture</subject><subject>Animals</subject><subject>Biodegradation</subject><subject>Biological activity</subject><subject>biological processes</subject><subject>Biological weapons</subject><subject>Bioturbation</subject><subject>Case studies</subject><subject>Climate change</subject><subject>Compacted soils</subject><subject>Compaction</subject><subject>degradation</subject><subject>Depletion</subject><subject>Dynamics</subject><subject>Economic conditions</subject><subject>Economics</subject><subject>Environmental degradation</subject><subject>Freeze-thawing</subject><subject>Hydrology</subject><subject>Land management</subject><subject>Life Sciences</subject><subject>Markvetenskap</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Nutrients</subject><subject>Oligochaeta</subject><subject>Organic matter</subject><subject>Plant growth</subject><subject>Plant roots</subject><subject>Plants</subject><subject>Research Review</subject><subject>Soil</subject><subject>Soil compaction</subject><subject>Soil degradation</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil fauna</subject><subject>Soil microorganisms</subject><subject>Soil profiles</subject><subject>Soil properties</subject><subject>Soil Science</subject><subject>Soil shrinkage</subject><subject>Soil structure</subject><subject>Soil study</subject><subject>structure</subject><subject>Tillage</subject><issn>1354-1013</issn><issn>1365-2486</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kUtv1DAUhSNERR-w4A8gS6xYZOpXbGeDNB31gTRSWXRv-ZWpixMXO5lR_j1JUwpFwl5c6_qcz1c-RfERwRWa1vnO6BWqsKjfFCeIsKrEVLC387miJYKIHBenOT9ACAmG7F1xTDCrMSXVSfF9DZqkWneI6QdoYgJttC4E3-1Ajj6A3KfB9ENywI6dar3JwHd2MM4CPQLtY4g7b1QAyvR-7_vxfXHUqJDdh-d6VtxdXd5tbsrt7fW3zXpbmgqxuuRac4u0VkxgYZRuqILUKSg0JcxQrmuONSFY2IY5Mm3MBdaVdQoxiyw5K1YLNh_c46DlY_KtSqOMysscBq3SXGR2EkHORT0Zvi6GSd06a1zXJxVe-V7fdP5e7uJe8orUNZ0BXxbA_T-2m_VWzj1IkKiYEHs0aT8_P5biz8HlXj7EIXXTf0hMKeU1qTn8QzQp5pxc84JFUM7ByilY-RTspP309_gvyt9JToLzRXDwwY3_J8nrzcWC_AX6IK6t</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Meurer, Katharina</creator><creator>Barron, Jennie</creator><creator>Chenu, Claire</creator><creator>Coucheney, Elsa</creator><creator>Fielding, Matthew</creator><creator>Hallett, Paul</creator><creator>Herrmann, Anke M.</creator><creator>Keller, Thomas</creator><creator>Koestel, John</creator><creator>Larsbo, Mats</creator><creator>Lewan, Elisabet</creator><creator>Or, Dani</creator><creator>Parsons, David</creator><creator>Parvin, Nargish</creator><creator>Taylor, Astrid</creator><creator>Vereecken, Harry</creator><creator>Jarvis, Nicholas</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-6725-6762</orcidid><orcidid>https://orcid.org/0000-0002-6273-1234</orcidid><orcidid>https://orcid.org/0000-0002-8880-9650</orcidid><orcidid>https://orcid.org/0000-0001-9054-0489</orcidid></search><sort><creationdate>202010</creationdate><title>A framework for modelling soil structure dynamics induced by biological activity</title><author>Meurer, Katharina ; Barron, Jennie ; Chenu, Claire ; Coucheney, Elsa ; Fielding, Matthew ; Hallett, Paul ; Herrmann, Anke M. ; Keller, Thomas ; Koestel, John ; Larsbo, Mats ; Lewan, Elisabet ; Or, Dani ; Parsons, David ; Parvin, Nargish ; Taylor, Astrid ; Vereecken, Harry ; Jarvis, Nicholas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5169-7bb7d1bba6828cabf4a04ea08b436c47b972b3328df6e3e3e2782b5dea16d1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agricultural sciences</topic><topic>Agriculture</topic><topic>Animals</topic><topic>Biodegradation</topic><topic>Biological activity</topic><topic>biological processes</topic><topic>Biological weapons</topic><topic>Bioturbation</topic><topic>Case studies</topic><topic>Climate change</topic><topic>Compacted soils</topic><topic>Compaction</topic><topic>degradation</topic><topic>Depletion</topic><topic>Dynamics</topic><topic>Economic conditions</topic><topic>Economics</topic><topic>Environmental degradation</topic><topic>Freeze-thawing</topic><topic>Hydrology</topic><topic>Land management</topic><topic>Life Sciences</topic><topic>Markvetenskap</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Nutrients</topic><topic>Oligochaeta</topic><topic>Organic matter</topic><topic>Plant growth</topic><topic>Plant roots</topic><topic>Plants</topic><topic>Research Review</topic><topic>Soil</topic><topic>Soil compaction</topic><topic>Soil degradation</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil fauna</topic><topic>Soil microorganisms</topic><topic>Soil profiles</topic><topic>Soil properties</topic><topic>Soil Science</topic><topic>Soil shrinkage</topic><topic>Soil structure</topic><topic>Soil study</topic><topic>structure</topic><topic>Tillage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meurer, Katharina</creatorcontrib><creatorcontrib>Barron, Jennie</creatorcontrib><creatorcontrib>Chenu, Claire</creatorcontrib><creatorcontrib>Coucheney, Elsa</creatorcontrib><creatorcontrib>Fielding, Matthew</creatorcontrib><creatorcontrib>Hallett, Paul</creatorcontrib><creatorcontrib>Herrmann, Anke M.</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Koestel, John</creatorcontrib><creatorcontrib>Larsbo, Mats</creatorcontrib><creatorcontrib>Lewan, Elisabet</creatorcontrib><creatorcontrib>Or, Dani</creatorcontrib><creatorcontrib>Parsons, David</creatorcontrib><creatorcontrib>Parvin, Nargish</creatorcontrib><creatorcontrib>Taylor, Astrid</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><creatorcontrib>Jarvis, Nicholas</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meurer, Katharina</au><au>Barron, Jennie</au><au>Chenu, Claire</au><au>Coucheney, Elsa</au><au>Fielding, Matthew</au><au>Hallett, Paul</au><au>Herrmann, Anke M.</au><au>Keller, Thomas</au><au>Koestel, John</au><au>Larsbo, Mats</au><au>Lewan, Elisabet</au><au>Or, Dani</au><au>Parsons, David</au><au>Parvin, Nargish</au><au>Taylor, Astrid</au><au>Vereecken, Harry</au><au>Jarvis, Nicholas</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for modelling soil structure dynamics induced by biological activity</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2020-10</date><risdate>2020</risdate><volume>26</volume><issue>10</issue><spage>5382</spage><epage>5403</epage><pages>5382-5403</pages><issn>1354-1013</issn><issn>1365-2486</issn><eissn>1365-2486</eissn><abstract>Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.
This photograph, depicting ant bioturbation, was taken at the compaction recovery experiment at Agroscope, Zurich, Switzerland. Together with other biological processes, faunal bioturbation profoundly influences soil structure and thus soil physical and hydraulic properties, hydrological processes and plant growth. The parsimonious model concept developed in this paper, which is designed to be compatible with profile‐scale soil–crop models, allows simulation of the effects of biological agents (e.g. plant roots and soil‐living organisms) on soil structure dynamics.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>32692435</pmid><doi>10.1111/gcb.15289</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6725-6762</orcidid><orcidid>https://orcid.org/0000-0002-6273-1234</orcidid><orcidid>https://orcid.org/0000-0002-8880-9650</orcidid><orcidid>https://orcid.org/0000-0001-9054-0489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2020-10, Vol.26 (10), p.5382-5403 |
issn | 1354-1013 1365-2486 1365-2486 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_107789 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; SWEPUB Freely available online |
subjects | Agricultural sciences Agriculture Animals Biodegradation Biological activity biological processes Biological weapons Bioturbation Case studies Climate change Compacted soils Compaction degradation Depletion Dynamics Economic conditions Economics Environmental degradation Freeze-thawing Hydrology Land management Life Sciences Markvetenskap Microorganisms Modelling Nutrients Oligochaeta Organic matter Plant growth Plant roots Plants Research Review Soil Soil compaction Soil degradation Soil dynamics Soil erosion Soil fauna Soil microorganisms Soil profiles Soil properties Soil Science Soil shrinkage Soil structure Soil study structure Tillage |
title | A framework for modelling soil structure dynamics induced by biological activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20modelling%20soil%20structure%20dynamics%20induced%20by%20biological%20activity&rft.jtitle=Global%20change%20biology&rft.au=Meurer,%20Katharina&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-10&rft.volume=26&rft.issue=10&rft.spage=5382&rft.epage=5403&rft.pages=5382-5403&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15289&rft_dat=%3Cproquest_swepu%3E2444793970%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444793970&rft_id=info:pmid/32692435&rfr_iscdi=true |