Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat
Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K ba...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-02, Vol.10 (1), p.3347-3347, Article 3347 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3347 |
---|---|
container_issue | 1 |
container_start_page | 3347 |
container_title | Scientific reports |
container_volume | 10 |
creator | Tsai, Hsin-Yuan Janss, Luc L. Andersen, Jeppe R. Orabi, Jihad Jensen, Jens D. Jahoor, Ahmed Jensen, Just |
description | Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat. |
doi_str_mv | 10.1038/s41598-020-60203-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_107361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365207274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-f222c60b0c6bb5f0b1473b33e7eba043a6ba3f925a50585c86c1153b2fe839af3</originalsourceid><addsrcrecordid>eNp9UU1v1DAUtBCIVkv_AAdkiQsHUvwRO8kFqapgi1SJAyCOlu28tF557a2ddLX_Hu9mW1oO-OBn6c2M571B6C0l55Tw9lOuqejaijBSyXLxir1Ap4zUomKcsZdP3ifoLOcVKUewrqbda3TCGek6IupTtFpCiGtn8SZB7-zoYsA69Hj5--IHjgPeOfD9R3w3ae_G3aHVuww6Q5XA6xF6PCbtxoxdwHmTXLjBRicPM3brwggJb29Bj2_Qq0H7DGfHukC_vn75eXlVXX9ffru8uK6sEGSsBsaYlcQQK40RAzG0brjhHBowmtRcS6P50DGhBRGtsK20lApu2AAt7_TAF-h81s1b2ExGFVNrnXYqaqeyn4q7fVEZFCUNl7QQPs-Egl5DbyGUkfwz3vNOcLfqJt6rhtSMC1kEPhwFUrybII9q7bIF73WAOGXFuBSMNKypC_T9P9BVnFIo-9ijeCcaeRBkM8qmmHOC4dEMJWofv5rjVyV5dYi_sBfo3dMxHikPYRcAPy7mkBOkv3__R_YPH_68BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363957656</pqid></control><display><type>article</type><title>Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat</title><source>Nature Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tsai, Hsin-Yuan ; Janss, Luc L. ; Andersen, Jeppe R. ; Orabi, Jihad ; Jensen, Jens D. ; Jahoor, Ahmed ; Jensen, Just</creator><creatorcontrib>Tsai, Hsin-Yuan ; Janss, Luc L. ; Andersen, Jeppe R. ; Orabi, Jihad ; Jensen, Jens D. ; Jahoor, Ahmed ; Jensen, Just ; Sveriges lantbruksuniversitet</creatorcontrib><description>Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-60203-2</identifier><identifier>PMID: 32099054</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449 ; 631/449/711 ; Agricultural Science ; Ascomycota - genetics ; Ascomycota - pathogenicity ; Bayes Theorem ; Bayesian analysis ; Breeding ; Disease Resistance - genetics ; Genome, Plant - genetics ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Genomics ; Genotype ; Genotypes ; Hordeum - genetics ; Hordeum - growth & development ; Hordeum - microbiology ; Humanities and Social Sciences ; Jordbruksvetenskap ; multidisciplinary ; Phenotype ; Plant breeding ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Polymorphism, Single Nucleotide - genetics ; Powdery mildew ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Science ; Science (multidisciplinary) ; Seasons ; Seeds ; Single-nucleotide polymorphism ; Starch ; Triticum - genetics ; Triticum - growth & development ; Triticum - microbiology ; Triticum aestivum ; Wheat</subject><ispartof>Scientific reports, 2020-02, Vol.10 (1), p.3347-3347, Article 3347</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-f222c60b0c6bb5f0b1473b33e7eba043a6ba3f925a50585c86c1153b2fe839af3</citedby><cites>FETCH-LOGICAL-c550t-f222c60b0c6bb5f0b1473b33e7eba043a6ba3f925a50585c86c1153b2fe839af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042356/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042356/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,27903,27904,41099,42168,51555,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32099054$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/107361$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsai, Hsin-Yuan</creatorcontrib><creatorcontrib>Janss, Luc L.</creatorcontrib><creatorcontrib>Andersen, Jeppe R.</creatorcontrib><creatorcontrib>Orabi, Jihad</creatorcontrib><creatorcontrib>Jensen, Jens D.</creatorcontrib><creatorcontrib>Jahoor, Ahmed</creatorcontrib><creatorcontrib>Jensen, Just</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat.</description><subject>631/449</subject><subject>631/449/711</subject><subject>Agricultural Science</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - pathogenicity</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Breeding</subject><subject>Disease Resistance - genetics</subject><subject>Genome, Plant - genetics</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Hordeum - genetics</subject><subject>Hordeum - growth & development</subject><subject>Hordeum - microbiology</subject><subject>Humanities and Social Sciences</subject><subject>Jordbruksvetenskap</subject><subject>multidisciplinary</subject><subject>Phenotype</subject><subject>Plant breeding</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Powdery mildew</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Seasons</subject><subject>Seeds</subject><subject>Single-nucleotide polymorphism</subject><subject>Starch</subject><subject>Triticum - genetics</subject><subject>Triticum - growth & development</subject><subject>Triticum - microbiology</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><recordid>eNp9UU1v1DAUtBCIVkv_AAdkiQsHUvwRO8kFqapgi1SJAyCOlu28tF557a2ddLX_Hu9mW1oO-OBn6c2M571B6C0l55Tw9lOuqejaijBSyXLxir1Ap4zUomKcsZdP3ifoLOcVKUewrqbda3TCGek6IupTtFpCiGtn8SZB7-zoYsA69Hj5--IHjgPeOfD9R3w3ae_G3aHVuww6Q5XA6xF6PCbtxoxdwHmTXLjBRicPM3brwggJb29Bj2_Qq0H7DGfHukC_vn75eXlVXX9ffru8uK6sEGSsBsaYlcQQK40RAzG0brjhHBowmtRcS6P50DGhBRGtsK20lApu2AAt7_TAF-h81s1b2ExGFVNrnXYqaqeyn4q7fVEZFCUNl7QQPs-Egl5DbyGUkfwz3vNOcLfqJt6rhtSMC1kEPhwFUrybII9q7bIF73WAOGXFuBSMNKypC_T9P9BVnFIo-9ijeCcaeRBkM8qmmHOC4dEMJWofv5rjVyV5dYi_sBfo3dMxHikPYRcAPy7mkBOkv3__R_YPH_68BA</recordid><startdate>20200225</startdate><enddate>20200225</enddate><creator>Tsai, Hsin-Yuan</creator><creator>Janss, Luc L.</creator><creator>Andersen, Jeppe R.</creator><creator>Orabi, Jihad</creator><creator>Jensen, Jens D.</creator><creator>Jahoor, Ahmed</creator><creator>Jensen, Just</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope></search><sort><creationdate>20200225</creationdate><title>Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat</title><author>Tsai, Hsin-Yuan ; Janss, Luc L. ; Andersen, Jeppe R. ; Orabi, Jihad ; Jensen, Jens D. ; Jahoor, Ahmed ; Jensen, Just</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-f222c60b0c6bb5f0b1473b33e7eba043a6ba3f925a50585c86c1153b2fe839af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/449</topic><topic>631/449/711</topic><topic>Agricultural Science</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - pathogenicity</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Breeding</topic><topic>Disease Resistance - genetics</topic><topic>Genome, Plant - genetics</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Hordeum - genetics</topic><topic>Hordeum - growth & development</topic><topic>Hordeum - microbiology</topic><topic>Humanities and Social Sciences</topic><topic>Jordbruksvetenskap</topic><topic>multidisciplinary</topic><topic>Phenotype</topic><topic>Plant breeding</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Powdery mildew</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Seasons</topic><topic>Seeds</topic><topic>Single-nucleotide polymorphism</topic><topic>Starch</topic><topic>Triticum - genetics</topic><topic>Triticum - growth & development</topic><topic>Triticum - microbiology</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsai, Hsin-Yuan</creatorcontrib><creatorcontrib>Janss, Luc L.</creatorcontrib><creatorcontrib>Andersen, Jeppe R.</creatorcontrib><creatorcontrib>Orabi, Jihad</creatorcontrib><creatorcontrib>Jensen, Jens D.</creatorcontrib><creatorcontrib>Jahoor, Ahmed</creatorcontrib><creatorcontrib>Jensen, Just</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsai, Hsin-Yuan</au><au>Janss, Luc L.</au><au>Andersen, Jeppe R.</au><au>Orabi, Jihad</au><au>Jensen, Jens D.</au><au>Jahoor, Ahmed</au><au>Jensen, Just</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-02-25</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>3347</spage><epage>3347</epage><pages>3347-3347</pages><artnum>3347</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32099054</pmid><doi>10.1038/s41598-020-60203-2</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-02, Vol.10 (1), p.3347-3347, Article 3347 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_107361 |
source | Nature Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Springer Nature OA Free Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/449 631/449/711 Agricultural Science Ascomycota - genetics Ascomycota - pathogenicity Bayes Theorem Bayesian analysis Breeding Disease Resistance - genetics Genome, Plant - genetics Genome-wide association studies Genome-Wide Association Study Genomes Genomics Genotype Genotypes Hordeum - genetics Hordeum - growth & development Hordeum - microbiology Humanities and Social Sciences Jordbruksvetenskap multidisciplinary Phenotype Plant breeding Plant Diseases - genetics Plant Diseases - microbiology Polymorphism, Single Nucleotide - genetics Powdery mildew Quantitative trait loci Quantitative Trait Loci - genetics Science Science (multidisciplinary) Seasons Seeds Single-nucleotide polymorphism Starch Triticum - genetics Triticum - growth & development Triticum - microbiology Triticum aestivum Wheat |
title | Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20prediction%20and%20GWAS%20of%20yield,%20quality%20and%20disease-related%20traits%20in%20spring%20barley%20and%20winter%20wheat&rft.jtitle=Scientific%20reports&rft.au=Tsai,%20Hsin-Yuan&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-02-25&rft.volume=10&rft.issue=1&rft.spage=3347&rft.epage=3347&rft.pages=3347-3347&rft.artnum=3347&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-60203-2&rft_dat=%3Cproquest_swepu%3E2365207274%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2363957656&rft_id=info:pmid/32099054&rfr_iscdi=true |