The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants
Abstract Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their i...
Gespeichert in:
Veröffentlicht in: | Genome biology and evolution 2020-01, Vol.12 (1), p.3586-3598 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3598 |
---|---|
container_issue | 1 |
container_start_page | 3586 |
container_title | Genome biology and evolution |
container_volume | 12 |
creator | Sullivan, Alexis R Eldfjell, Yrin Schiffthaler, Bastian Delhomme, Nicolas Asp, Torben Hebelstrup, Kim H Keech, Olivier Öberg, Lisa Møller, Ian Max Arvestad, Lars Street, Nathaniel R Wang, Xiao-Ru |
description | Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity. |
doi_str_mv | 10.1093/gbe/evz263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_105334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gbe/evz263</oup_id><sourcerecordid>2319199859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-153a5cdef7e8bfe3302f5849db426b35545b17f00e6626b3b6c9e5ea6933c3803</originalsourceid><addsrcrecordid>eNqFkstu1jAQhS0EohfY8ADIGyRUkdaOL4k3SFW5SuWiUliwsRxn8v9GiR3spFV5ehylVO0CWM1o_J3j0egg9ISSQ0oUO9o0cAQXv0rJ7qFdWglVSCnY_Vv9DtpL6QchUnLJHqIdRquKc6V20ffzLeAPbgob8GEAHDr8McRLc4W_jHG2gI1vscFnYMYxGpdMvyCLwG6Db6PLgzOwYWicN5MLHjuPP_fGT-kRetCZPsHj67qPvr55fX7yrjj99Pb9yfFpYUVdTwUVzAjbQldB3XTAGCk7UXPVNryUDROCi4ZWHSEg5TJopFUgwEjFmGU1YfvocPVNlzDOjR6jG0y80sE4nfq5MXEpOoGmRDDGs6D4q-CV-3asQ9zoeZg1lTXhLPMv_s-njNeU1TLjL1c8swO0FvwUTX9HdffFu63ehAstFeclXfZ7fm0Qw88Z0qQHlyz0-aoQ5qRLRhVVqhYqowcramNIKUJ38w0legmHzuHQazgy_PT2YjfonzRk4NkKhHn8l9FvkVzFOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319199859</pqid></control><display><type>article</type><title>The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants</title><source>Oxford Journals Open Access Collection</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Sullivan, Alexis R ; Eldfjell, Yrin ; Schiffthaler, Bastian ; Delhomme, Nicolas ; Asp, Torben ; Hebelstrup, Kim H ; Keech, Olivier ; Öberg, Lisa ; Møller, Ian Max ; Arvestad, Lars ; Street, Nathaniel R ; Wang, Xiao-Ru</creator><contributor>Vision, Todd</contributor><creatorcontrib>Sullivan, Alexis R ; Eldfjell, Yrin ; Schiffthaler, Bastian ; Delhomme, Nicolas ; Asp, Torben ; Hebelstrup, Kim H ; Keech, Olivier ; Öberg, Lisa ; Møller, Ian Max ; Arvestad, Lars ; Street, Nathaniel R ; Wang, Xiao-Ru ; Sveriges lantbruksuniversitet ; Vision, Todd</creatorcontrib><description>Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.</description><identifier>ISSN: 1759-6653</identifier><identifier>EISSN: 1759-6653</identifier><identifier>DOI: 10.1093/gbe/evz263</identifier><identifier>PMID: 31774499</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Evolutionary Biology ; Evolutionsbiologi ; Genetics ; Genetik ; mitogenome ; rearrangement rates ; recombination ; repeats ; structural variation</subject><ispartof>Genome biology and evolution, 2020-01, Vol.12 (1), p.3586-3598</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-153a5cdef7e8bfe3302f5849db426b35545b17f00e6626b3b6c9e5ea6933c3803</citedby><cites>FETCH-LOGICAL-c588t-153a5cdef7e8bfe3302f5849db426b35545b17f00e6626b3b6c9e5ea6933c3803</cites><orcidid>0000-0002-9771-467X ; 0000-0002-0546-7721 ; 0000-0002-6150-7046 ; 0000-0001-6031-005X ; 0000-0002-6470-2410 ; 0000-0002-7919-7787 ; 0000-0002-3984-3633 ; 0000-0002-3053-0796 ; 0000-0003-2182-911X ; 0000-0001-5341-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944214/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944214/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31774499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181386$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-168043$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/105334$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Vision, Todd</contributor><creatorcontrib>Sullivan, Alexis R</creatorcontrib><creatorcontrib>Eldfjell, Yrin</creatorcontrib><creatorcontrib>Schiffthaler, Bastian</creatorcontrib><creatorcontrib>Delhomme, Nicolas</creatorcontrib><creatorcontrib>Asp, Torben</creatorcontrib><creatorcontrib>Hebelstrup, Kim H</creatorcontrib><creatorcontrib>Keech, Olivier</creatorcontrib><creatorcontrib>Öberg, Lisa</creatorcontrib><creatorcontrib>Møller, Ian Max</creatorcontrib><creatorcontrib>Arvestad, Lars</creatorcontrib><creatorcontrib>Street, Nathaniel R</creatorcontrib><creatorcontrib>Wang, Xiao-Ru</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants</title><title>Genome biology and evolution</title><addtitle>Genome Biol Evol</addtitle><description>Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.</description><subject>Evolutionary Biology</subject><subject>Evolutionsbiologi</subject><subject>Genetics</subject><subject>Genetik</subject><subject>mitogenome</subject><subject>rearrangement rates</subject><subject>recombination</subject><subject>repeats</subject><subject>structural variation</subject><issn>1759-6653</issn><issn>1759-6653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>D8T</sourceid><recordid>eNqFkstu1jAQhS0EohfY8ADIGyRUkdaOL4k3SFW5SuWiUliwsRxn8v9GiR3spFV5ehylVO0CWM1o_J3j0egg9ISSQ0oUO9o0cAQXv0rJ7qFdWglVSCnY_Vv9DtpL6QchUnLJHqIdRquKc6V20ffzLeAPbgob8GEAHDr8McRLc4W_jHG2gI1vscFnYMYxGpdMvyCLwG6Db6PLgzOwYWicN5MLHjuPP_fGT-kRetCZPsHj67qPvr55fX7yrjj99Pb9yfFpYUVdTwUVzAjbQldB3XTAGCk7UXPVNryUDROCi4ZWHSEg5TJopFUgwEjFmGU1YfvocPVNlzDOjR6jG0y80sE4nfq5MXEpOoGmRDDGs6D4q-CV-3asQ9zoeZg1lTXhLPMv_s-njNeU1TLjL1c8swO0FvwUTX9HdffFu63ehAstFeclXfZ7fm0Qw88Z0qQHlyz0-aoQ5qRLRhVVqhYqowcramNIKUJ38w0legmHzuHQazgy_PT2YjfonzRk4NkKhHn8l9FvkVzFOw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Sullivan, Alexis R</creator><creator>Eldfjell, Yrin</creator><creator>Schiffthaler, Bastian</creator><creator>Delhomme, Nicolas</creator><creator>Asp, Torben</creator><creator>Hebelstrup, Kim H</creator><creator>Keech, Olivier</creator><creator>Öberg, Lisa</creator><creator>Møller, Ian Max</creator><creator>Arvestad, Lars</creator><creator>Street, Nathaniel R</creator><creator>Wang, Xiao-Ru</creator><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><scope>ADHXS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0002-9771-467X</orcidid><orcidid>https://orcid.org/0000-0002-0546-7721</orcidid><orcidid>https://orcid.org/0000-0002-6150-7046</orcidid><orcidid>https://orcid.org/0000-0001-6031-005X</orcidid><orcidid>https://orcid.org/0000-0002-6470-2410</orcidid><orcidid>https://orcid.org/0000-0002-7919-7787</orcidid><orcidid>https://orcid.org/0000-0002-3984-3633</orcidid><orcidid>https://orcid.org/0000-0002-3053-0796</orcidid><orcidid>https://orcid.org/0000-0003-2182-911X</orcidid><orcidid>https://orcid.org/0000-0001-5341-1733</orcidid></search><sort><creationdate>20200101</creationdate><title>The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants</title><author>Sullivan, Alexis R ; Eldfjell, Yrin ; Schiffthaler, Bastian ; Delhomme, Nicolas ; Asp, Torben ; Hebelstrup, Kim H ; Keech, Olivier ; Öberg, Lisa ; Møller, Ian Max ; Arvestad, Lars ; Street, Nathaniel R ; Wang, Xiao-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-153a5cdef7e8bfe3302f5849db426b35545b17f00e6626b3b6c9e5ea6933c3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Evolutionary Biology</topic><topic>Evolutionsbiologi</topic><topic>Genetics</topic><topic>Genetik</topic><topic>mitogenome</topic><topic>rearrangement rates</topic><topic>recombination</topic><topic>repeats</topic><topic>structural variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sullivan, Alexis R</creatorcontrib><creatorcontrib>Eldfjell, Yrin</creatorcontrib><creatorcontrib>Schiffthaler, Bastian</creatorcontrib><creatorcontrib>Delhomme, Nicolas</creatorcontrib><creatorcontrib>Asp, Torben</creatorcontrib><creatorcontrib>Hebelstrup, Kim H</creatorcontrib><creatorcontrib>Keech, Olivier</creatorcontrib><creatorcontrib>Öberg, Lisa</creatorcontrib><creatorcontrib>Møller, Ian Max</creatorcontrib><creatorcontrib>Arvestad, Lars</creatorcontrib><creatorcontrib>Street, Nathaniel R</creatorcontrib><creatorcontrib>Wang, Xiao-Ru</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Genome biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sullivan, Alexis R</au><au>Eldfjell, Yrin</au><au>Schiffthaler, Bastian</au><au>Delhomme, Nicolas</au><au>Asp, Torben</au><au>Hebelstrup, Kim H</au><au>Keech, Olivier</au><au>Öberg, Lisa</au><au>Møller, Ian Max</au><au>Arvestad, Lars</au><au>Street, Nathaniel R</au><au>Wang, Xiao-Ru</au><au>Vision, Todd</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants</atitle><jtitle>Genome biology and evolution</jtitle><addtitle>Genome Biol Evol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><spage>3586</spage><epage>3598</epage><pages>3586-3598</pages><issn>1759-6653</issn><eissn>1759-6653</eissn><abstract>Abstract
Plant mitogenomes can be difficult to assemble because they are structurally dynamic and prone to intergenomic DNA transfers, leading to the unusual situation where an organelle genome is far outnumbered by its nuclear counterparts. As a result, comparative mitogenome studies are in their infancy and some key aspects of genome evolution are still known mainly from pregenomic, qualitative methods. To help address these limitations, we combined machine learning and in silico enrichment of mitochondrial-like long reads to assemble the bacterial-sized mitogenome of Norway spruce (Pinaceae: Picea abies). We conducted comparative analyses of repeat abundance, intergenomic transfers, substitution and rearrangement rates, and estimated repeat-by-repeat homologous recombination rates. Prompted by our discovery of highly recombinogenic small repeats in P. abies, we assessed the genomic support for the prevailing hypothesis that intramolecular recombination is predominantly driven by repeat length, with larger repeats facilitating DNA exchange more readily. Overall, we found mixed support for this view: Recombination dynamics were heterogeneous across vascular plants and highly active small repeats (ca. 200 bp) were present in about one-third of studied mitogenomes. As in previous studies, we did not observe any robust relationships among commonly studied genome attributes, but we identify variation in recombination rates as a underinvestigated source of plant mitogenome diversity.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31774499</pmid><doi>10.1093/gbe/evz263</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9771-467X</orcidid><orcidid>https://orcid.org/0000-0002-0546-7721</orcidid><orcidid>https://orcid.org/0000-0002-6150-7046</orcidid><orcidid>https://orcid.org/0000-0001-6031-005X</orcidid><orcidid>https://orcid.org/0000-0002-6470-2410</orcidid><orcidid>https://orcid.org/0000-0002-7919-7787</orcidid><orcidid>https://orcid.org/0000-0002-3984-3633</orcidid><orcidid>https://orcid.org/0000-0002-3053-0796</orcidid><orcidid>https://orcid.org/0000-0003-2182-911X</orcidid><orcidid>https://orcid.org/0000-0001-5341-1733</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-6653 |
ispartof | Genome biology and evolution, 2020-01, Vol.12 (1), p.3586-3598 |
issn | 1759-6653 1759-6653 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_105334 |
source | Oxford Journals Open Access Collection; PMC (PubMed Central); DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online |
subjects | Evolutionary Biology Evolutionsbiologi Genetics Genetik mitogenome rearrangement rates recombination repeats structural variation |
title | The Mitogenome of Norway Spruce and a Reappraisal of Mitochondrial Recombination in Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Mitogenome%20of%20Norway%20Spruce%20and%20a%20Reappraisal%20of%20Mitochondrial%20Recombination%20in%20Plants&rft.jtitle=Genome%20biology%20and%20evolution&rft.au=Sullivan,%20Alexis%20R&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-01-01&rft.volume=12&rft.issue=1&rft.spage=3586&rft.epage=3598&rft.pages=3586-3598&rft.issn=1759-6653&rft.eissn=1759-6653&rft_id=info:doi/10.1093/gbe/evz263&rft_dat=%3Cproquest_swepu%3E2319199859%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319199859&rft_id=info:pmid/31774499&rft_oup_id=10.1093/gbe/evz263&rfr_iscdi=true |