Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient
Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water...
Gespeichert in:
Veröffentlicht in: | European journal of forest research 2020-04, Vol.139, p.229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 229 |
container_title | European journal of forest research |
container_volume | 139 |
creator | Barbeito, Ignacio Löf, Magnus |
description | Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water-related mixing effects, we analysed the delta C-13 variation in 22-year tree ring chronologies for beech and pine trees sampled from 17 pure and mixed pine-beech stands across a large gradient of environmental conditions throughout Europe. In the pure stands, average delta C-13 values were lower for beech (-27.9 parts per thousand to -22.2 parts per thousand) than for pine (-26.0 parts per thousand to -21.1 parts per thousand), irrespective of site conditions. Decreasing SPEI values (calculated over June to September) were associated with an increase in delta C-13 for both species, but their effect was influenced by stand basal area for pine and site water availability for beech. Mixing did not change the temporal constancy of delta C-13 nor the tree reaction to a drought event, for any of the species. While the mixing effect (Delta delta C-13 = delta C-13 pure stands - delta C-13 mixed stands) was on average positive for beech and non-significant for pine across the whole gradient, this effect strongly differed between sites. For both species, mixing was not significant at extremely dry sites and positive at dry sites; on moderately wet sites, mixing was positive for beech and negative for pine; at sites with permanent water supply, no general patterns emerge for any of the species. The pattern of mixing effect along the gradient of water availability was not linear but showed threshold points, highlighting the need to investigate such relation for other combinations of tree species. |
doi_str_mv | 10.1007/s10342-019-01224-z |
format | Article |
fullrecord | <record><control><sourceid>swepub</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_105194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_slubar_slu_se_105194</sourcerecordid><originalsourceid>FETCH-LOGICAL-s124t-2c80d1ee2e69a3613799de272869872c9d91533a87b923d7c6971ece5848d7053</originalsourceid><addsrcrecordid>eNotjMtKxDAYRrNQcBx9AVd5gYz5kzaXpRRvMOBG1yXT_B0inaQkGUd9eiu6-DgfHDiE3ADfAOf6tgCXjWAc7DIhGvZ9RlagQLBGKXtBLkt551wYa8yK7LsUa3alhrins6sVcyw0jbRmRFpmHAIWegif9ZiR4jjiUBcf6SklTz1O1dGOgaRuSkvBRYrxI-QUDxirm-g-Ox-We0XORzcVvP7nmrw93L92T2z78vjc3W1ZAdFUJgbDPSAKVNZJBVJb61FoYZQ1WgzWW2ildEbvrJBeD8pqwAFb0xiveSvXZPPXLSecj7t-zuHg8lefXOjLdNy5_Iu-YA-8BdvIH-MXXMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient</title><source>SpringerNature Journals</source><creator>Barbeito, Ignacio ; Löf, Magnus</creator><creatorcontrib>Barbeito, Ignacio ; Löf, Magnus ; Sveriges lantbruksuniversitet</creatorcontrib><description>Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water-related mixing effects, we analysed the delta C-13 variation in 22-year tree ring chronologies for beech and pine trees sampled from 17 pure and mixed pine-beech stands across a large gradient of environmental conditions throughout Europe. In the pure stands, average delta C-13 values were lower for beech (-27.9 parts per thousand to -22.2 parts per thousand) than for pine (-26.0 parts per thousand to -21.1 parts per thousand), irrespective of site conditions. Decreasing SPEI values (calculated over June to September) were associated with an increase in delta C-13 for both species, but their effect was influenced by stand basal area for pine and site water availability for beech. Mixing did not change the temporal constancy of delta C-13 nor the tree reaction to a drought event, for any of the species. While the mixing effect (Delta delta C-13 = delta C-13 pure stands - delta C-13 mixed stands) was on average positive for beech and non-significant for pine across the whole gradient, this effect strongly differed between sites. For both species, mixing was not significant at extremely dry sites and positive at dry sites; on moderately wet sites, mixing was positive for beech and negative for pine; at sites with permanent water supply, no general patterns emerge for any of the species. The pattern of mixing effect along the gradient of water availability was not linear but showed threshold points, highlighting the need to investigate such relation for other combinations of tree species.</description><identifier>ISSN: 1612-4669</identifier><identifier>ISSN: 1612-4677</identifier><identifier>DOI: 10.1007/s10342-019-01224-z</identifier><language>eng</language><subject>Forest Science ; Skogsvetenskap</subject><ispartof>European journal of forest research, 2020-04, Vol.139, p.229</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://res.slu.se/id/publ/105194$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbeito, Ignacio</creatorcontrib><creatorcontrib>Löf, Magnus</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient</title><title>European journal of forest research</title><description>Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water-related mixing effects, we analysed the delta C-13 variation in 22-year tree ring chronologies for beech and pine trees sampled from 17 pure and mixed pine-beech stands across a large gradient of environmental conditions throughout Europe. In the pure stands, average delta C-13 values were lower for beech (-27.9 parts per thousand to -22.2 parts per thousand) than for pine (-26.0 parts per thousand to -21.1 parts per thousand), irrespective of site conditions. Decreasing SPEI values (calculated over June to September) were associated with an increase in delta C-13 for both species, but their effect was influenced by stand basal area for pine and site water availability for beech. Mixing did not change the temporal constancy of delta C-13 nor the tree reaction to a drought event, for any of the species. While the mixing effect (Delta delta C-13 = delta C-13 pure stands - delta C-13 mixed stands) was on average positive for beech and non-significant for pine across the whole gradient, this effect strongly differed between sites. For both species, mixing was not significant at extremely dry sites and positive at dry sites; on moderately wet sites, mixing was positive for beech and negative for pine; at sites with permanent water supply, no general patterns emerge for any of the species. The pattern of mixing effect along the gradient of water availability was not linear but showed threshold points, highlighting the need to investigate such relation for other combinations of tree species.</description><subject>Forest Science</subject><subject>Skogsvetenskap</subject><issn>1612-4669</issn><issn>1612-4677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjMtKxDAYRrNQcBx9AVd5gYz5kzaXpRRvMOBG1yXT_B0inaQkGUd9eiu6-DgfHDiE3ADfAOf6tgCXjWAc7DIhGvZ9RlagQLBGKXtBLkt551wYa8yK7LsUa3alhrins6sVcyw0jbRmRFpmHAIWegif9ZiR4jjiUBcf6SklTz1O1dGOgaRuSkvBRYrxI-QUDxirm-g-Ox-We0XORzcVvP7nmrw93L92T2z78vjc3W1ZAdFUJgbDPSAKVNZJBVJb61FoYZQ1WgzWW2ildEbvrJBeD8pqwAFb0xiveSvXZPPXLSecj7t-zuHg8lefXOjLdNy5_Iu-YA-8BdvIH-MXXMg</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Barbeito, Ignacio</creator><creator>Löf, Magnus</creator><scope>ADTPV</scope><scope>AOWAS</scope></search><sort><creationdate>20200401</creationdate><title>Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient</title><author>Barbeito, Ignacio ; Löf, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s124t-2c80d1ee2e69a3613799de272869872c9d91533a87b923d7c6971ece5848d7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Forest Science</topic><topic>Skogsvetenskap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbeito, Ignacio</creatorcontrib><creatorcontrib>Löf, Magnus</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>SwePub</collection><collection>SwePub Articles</collection><jtitle>European journal of forest research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbeito, Ignacio</au><au>Löf, Magnus</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient</atitle><jtitle>European journal of forest research</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>139</volume><spage>229</spage><pages>229-</pages><issn>1612-4669</issn><issn>1612-4677</issn><abstract>Establishing mixed-species stands is frequently proposed as a strategy to adapt forests to the increasing risk of water scarcity, yet contrasted results have been reported regarding mixing effects on tree drought exposure. To investigate the drivers behind the spatial and temporal variation in water-related mixing effects, we analysed the delta C-13 variation in 22-year tree ring chronologies for beech and pine trees sampled from 17 pure and mixed pine-beech stands across a large gradient of environmental conditions throughout Europe. In the pure stands, average delta C-13 values were lower for beech (-27.9 parts per thousand to -22.2 parts per thousand) than for pine (-26.0 parts per thousand to -21.1 parts per thousand), irrespective of site conditions. Decreasing SPEI values (calculated over June to September) were associated with an increase in delta C-13 for both species, but their effect was influenced by stand basal area for pine and site water availability for beech. Mixing did not change the temporal constancy of delta C-13 nor the tree reaction to a drought event, for any of the species. While the mixing effect (Delta delta C-13 = delta C-13 pure stands - delta C-13 mixed stands) was on average positive for beech and non-significant for pine across the whole gradient, this effect strongly differed between sites. For both species, mixing was not significant at extremely dry sites and positive at dry sites; on moderately wet sites, mixing was positive for beech and negative for pine; at sites with permanent water supply, no general patterns emerge for any of the species. The pattern of mixing effect along the gradient of water availability was not linear but showed threshold points, highlighting the need to investigate such relation for other combinations of tree species.</abstract><doi>10.1007/s10342-019-01224-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-4669 |
ispartof | European journal of forest research, 2020-04, Vol.139, p.229 |
issn | 1612-4669 1612-4677 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_105194 |
source | SpringerNature Journals |
subjects | Forest Science Skogsvetenskap |
title | Contrasting patterns of tree species mixture effects on wood delta C-13 along an environmental gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrasting%20patterns%20of%20tree%20species%20mixture%20effects%20on%20wood%20delta%20C-13%20along%20an%20environmental%20gradient&rft.jtitle=European%20journal%20of%20forest%20research&rft.au=Barbeito,%20Ignacio&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2020-04-01&rft.volume=139&rft.spage=229&rft.pages=229-&rft.issn=1612-4669&rft_id=info:doi/10.1007/s10342-019-01224-z&rft_dat=%3Cswepub%3Eoai_slubar_slu_se_105194%3C/swepub%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |