Genome‐scale model of Rhodotorula toruloides metabolism

The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2019-12, Vol.116 (12), p.3396-3408
Hauptverfasser: Tiukova, Ievgeniia A., Prigent, Sylvain, Nielsen, Jens, Sandgren, Mats, Kerkhoven, Eduard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3408
container_issue 12
container_start_page 3396
container_title Biotechnology and bioengineering
container_volume 116
creator Tiukova, Ievgeniia A.
Prigent, Sylvain
Nielsen, Jens
Sandgren, Mats
Kerkhoven, Eduard J.
description The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2,277 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose, and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols, and carotenoids identified genes—some of which have previously been engineered to successfully increase production. This renders rtho‐GEM valuable for future studies to improve the production of other oleochemicals of industrial relevance including value‐added fatty acids and carotenoids, in addition to facilitate system‐wide omics‐data analysis in R. toruloides. Expanding the portfolio of GEMs for lipid‐accumulating fungi contributes to both understanding of metabolic mechanisms of the oleaginous phenotype but also uncover particularities of the lipid production machinery in R. toruloides. The basidiomycete red yeast, Rhodotorula toruloides, is a promising platform organism for production of bio‐oils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox.
doi_str_mv 10.1002/bit.27162
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_102024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312264445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5742-7b0018b2ef1b4e612c43d44e8b794aa3d09920406398f71c86c3635167efb4b33</originalsourceid><addsrcrecordid>eNp1ks9u1DAQhy0EokvhwAugSFzgkK09dvznWKrSVloJCcrZspOJNpWzXuxNq954BJ6xT4K3KUUg9TSy9f0-j8ZDyFtGl4xSOPLDbgmKSXhGFowaVVMw9DlZUEplzRsDB-RVzlflqLSUL8kBZw0FKZsFMWe4iSPe_fyVWxewGmOHoYp99XUdu7iLaQquui9x6DBXI-6cj2HI42vyonch45uHeki-fz69PDmvV1_OLk6OV3XbKAG18pQy7QF75gVKBq3gnRCovTLCOd5RY4AKKrnRvWKtli2XvGFSYe-F5_yQLGdvvsHt5O02DaNLtza6weYweZf2xWa0jAIFUQLfngwkzOhSu7bt2oURU97nhKbCIQPrO8WtaHtnNRfOGiMa7AzrOJPF-nG2luA_yvPjld3flYGCUNpcs8J-mNltij8mzDs7DrnFENwG45QtgNaUcTCmoO__Q6_ilDZloBY4A5BCiObv422KOSfsHztg1O5XwJYVsPcrUNh3D8bJj9g9kn_-vABHM3AzBLx92mQ_XVzOyt-wprjN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312264445</pqid></control><display><type>article</type><title>Genome‐scale model of Rhodotorula toruloides metabolism</title><source>Access via Wiley Online Library</source><creator>Tiukova, Ievgeniia A. ; Prigent, Sylvain ; Nielsen, Jens ; Sandgren, Mats ; Kerkhoven, Eduard J.</creator><creatorcontrib>Tiukova, Ievgeniia A. ; Prigent, Sylvain ; Nielsen, Jens ; Sandgren, Mats ; Kerkhoven, Eduard J. ; Sveriges lantbruksuniversitet</creatorcontrib><description>The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2,277 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose, and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols, and carotenoids identified genes—some of which have previously been engineered to successfully increase production. This renders rtho‐GEM valuable for future studies to improve the production of other oleochemicals of industrial relevance including value‐added fatty acids and carotenoids, in addition to facilitate system‐wide omics‐data analysis in R. toruloides. Expanding the portfolio of GEMs for lipid‐accumulating fungi contributes to both understanding of metabolic mechanisms of the oleaginous phenotype but also uncover particularities of the lipid production machinery in R. toruloides. The basidiomycete red yeast, Rhodotorula toruloides, is a promising platform organism for production of bio‐oils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox.</description><identifier>ISSN: 0006-3592</identifier><identifier>ISSN: 1097-0290</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.27162</identifier><identifier>PMID: 31502665</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Carotenoids ; Computer simulation ; Data analysis ; Fatty acids ; Fungi ; Gems ; Genes ; Genetic engineering ; Genetics ; Genetik ; genome-scale model ; Genomes ; Glycerol ; Life Sciences ; Linolenic acid ; Lipid metabolism ; Lipids ; Metabolism ; Metabolites ; Microbiology ; Mikrobiologi ; Phenotypes ; Rhodotorula ; Rhodotorula toruloides ; Scale models ; Triglycerides ; Vegetal Biology ; Xylose ; Yeast ; Yeasts</subject><ispartof>Biotechnology and bioengineering, 2019-12, Vol.116 (12), p.3396-3408</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5742-7b0018b2ef1b4e612c43d44e8b794aa3d09920406398f71c86c3635167efb4b33</citedby><cites>FETCH-LOGICAL-c5742-7b0018b2ef1b4e612c43d44e8b794aa3d09920406398f71c86c3635167efb4b33</cites><orcidid>0000-0002-3593-5792 ; 0000-0002-0408-3515 ; 0000-0002-9955-6003 ; 0000-0001-5146-0347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.27162$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.27162$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31502665$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02624789$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/513339$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/102024$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiukova, Ievgeniia A.</creatorcontrib><creatorcontrib>Prigent, Sylvain</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><creatorcontrib>Sandgren, Mats</creatorcontrib><creatorcontrib>Kerkhoven, Eduard J.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Genome‐scale model of Rhodotorula toruloides metabolism</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2,277 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose, and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols, and carotenoids identified genes—some of which have previously been engineered to successfully increase production. This renders rtho‐GEM valuable for future studies to improve the production of other oleochemicals of industrial relevance including value‐added fatty acids and carotenoids, in addition to facilitate system‐wide omics‐data analysis in R. toruloides. Expanding the portfolio of GEMs for lipid‐accumulating fungi contributes to both understanding of metabolic mechanisms of the oleaginous phenotype but also uncover particularities of the lipid production machinery in R. toruloides. The basidiomycete red yeast, Rhodotorula toruloides, is a promising platform organism for production of bio‐oils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox.</description><subject>Carotenoids</subject><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Fatty acids</subject><subject>Fungi</subject><subject>Gems</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Genetik</subject><subject>genome-scale model</subject><subject>Genomes</subject><subject>Glycerol</subject><subject>Life Sciences</subject><subject>Linolenic acid</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Phenotypes</subject><subject>Rhodotorula</subject><subject>Rhodotorula toruloides</subject><subject>Scale models</subject><subject>Triglycerides</subject><subject>Vegetal Biology</subject><subject>Xylose</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0006-3592</issn><issn>1097-0290</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1ks9u1DAQhy0EokvhwAugSFzgkK09dvznWKrSVloJCcrZspOJNpWzXuxNq954BJ6xT4K3KUUg9TSy9f0-j8ZDyFtGl4xSOPLDbgmKSXhGFowaVVMw9DlZUEplzRsDB-RVzlflqLSUL8kBZw0FKZsFMWe4iSPe_fyVWxewGmOHoYp99XUdu7iLaQquui9x6DBXI-6cj2HI42vyonch45uHeki-fz69PDmvV1_OLk6OV3XbKAG18pQy7QF75gVKBq3gnRCovTLCOd5RY4AKKrnRvWKtli2XvGFSYe-F5_yQLGdvvsHt5O02DaNLtza6weYweZf2xWa0jAIFUQLfngwkzOhSu7bt2oURU97nhKbCIQPrO8WtaHtnNRfOGiMa7AzrOJPF-nG2luA_yvPjld3flYGCUNpcs8J-mNltij8mzDs7DrnFENwG45QtgNaUcTCmoO__Q6_ilDZloBY4A5BCiObv422KOSfsHztg1O5XwJYVsPcrUNh3D8bJj9g9kn_-vABHM3AzBLx92mQ_XVzOyt-wprjN</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Tiukova, Ievgeniia A.</creator><creator>Prigent, Sylvain</creator><creator>Nielsen, Jens</creator><creator>Sandgren, Mats</creator><creator>Kerkhoven, Eduard J.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0002-3593-5792</orcidid><orcidid>https://orcid.org/0000-0002-0408-3515</orcidid><orcidid>https://orcid.org/0000-0002-9955-6003</orcidid><orcidid>https://orcid.org/0000-0001-5146-0347</orcidid></search><sort><creationdate>201912</creationdate><title>Genome‐scale model of Rhodotorula toruloides metabolism</title><author>Tiukova, Ievgeniia A. ; Prigent, Sylvain ; Nielsen, Jens ; Sandgren, Mats ; Kerkhoven, Eduard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5742-7b0018b2ef1b4e612c43d44e8b794aa3d09920406398f71c86c3635167efb4b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carotenoids</topic><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Fatty acids</topic><topic>Fungi</topic><topic>Gems</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Genetik</topic><topic>genome-scale model</topic><topic>Genomes</topic><topic>Glycerol</topic><topic>Life Sciences</topic><topic>Linolenic acid</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Phenotypes</topic><topic>Rhodotorula</topic><topic>Rhodotorula toruloides</topic><topic>Scale models</topic><topic>Triglycerides</topic><topic>Vegetal Biology</topic><topic>Xylose</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiukova, Ievgeniia A.</creatorcontrib><creatorcontrib>Prigent, Sylvain</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><creatorcontrib>Sandgren, Mats</creatorcontrib><creatorcontrib>Kerkhoven, Eduard J.</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiukova, Ievgeniia A.</au><au>Prigent, Sylvain</au><au>Nielsen, Jens</au><au>Sandgren, Mats</au><au>Kerkhoven, Eduard J.</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐scale model of Rhodotorula toruloides metabolism</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2019-12</date><risdate>2019</risdate><volume>116</volume><issue>12</issue><spage>3396</spage><epage>3408</epage><pages>3396-3408</pages><issn>0006-3592</issn><issn>1097-0290</issn><eissn>1097-0290</eissn><abstract>The basidiomycete red yeast Rhodotorula toruloides is a promising platform organism for production of biooils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox. The model includes 852 genes, 2,731 reactions, and 2,277 metabolites, while lipid metabolism is described using the SLIMEr formalism allowing direct integration of lipid class and acyl chain experimental distribution data. The simulation results confirmed that the R. toruloides model provides valid growth predictions on glucose, xylose, and glycerol, while prediction of genetic engineering targets to increase production of linolenic acid, triacylglycerols, and carotenoids identified genes—some of which have previously been engineered to successfully increase production. This renders rtho‐GEM valuable for future studies to improve the production of other oleochemicals of industrial relevance including value‐added fatty acids and carotenoids, in addition to facilitate system‐wide omics‐data analysis in R. toruloides. Expanding the portfolio of GEMs for lipid‐accumulating fungi contributes to both understanding of metabolic mechanisms of the oleaginous phenotype but also uncover particularities of the lipid production machinery in R. toruloides. The basidiomycete red yeast, Rhodotorula toruloides, is a promising platform organism for production of bio‐oils. We present rhto‐GEM, the first genome‐scale model (GEM) of R. toruloides metabolism, that was largely reconstructed using RAVEN toolbox.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31502665</pmid><doi>10.1002/bit.27162</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3593-5792</orcidid><orcidid>https://orcid.org/0000-0002-0408-3515</orcidid><orcidid>https://orcid.org/0000-0002-9955-6003</orcidid><orcidid>https://orcid.org/0000-0001-5146-0347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2019-12, Vol.116 (12), p.3396-3408
issn 0006-3592
1097-0290
1097-0290
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_102024
source Access via Wiley Online Library
subjects Carotenoids
Computer simulation
Data analysis
Fatty acids
Fungi
Gems
Genes
Genetic engineering
Genetics
Genetik
genome-scale model
Genomes
Glycerol
Life Sciences
Linolenic acid
Lipid metabolism
Lipids
Metabolism
Metabolites
Microbiology
Mikrobiologi
Phenotypes
Rhodotorula
Rhodotorula toruloides
Scale models
Triglycerides
Vegetal Biology
Xylose
Yeast
Yeasts
title Genome‐scale model of Rhodotorula toruloides metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T21%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90scale%20model%20of%20Rhodotorula%20toruloides%20metabolism&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Tiukova,%20Ievgeniia%20A.&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2019-12&rft.volume=116&rft.issue=12&rft.spage=3396&rft.epage=3408&rft.pages=3396-3408&rft.issn=0006-3592&rft.eissn=1097-0290&rft_id=info:doi/10.1002/bit.27162&rft_dat=%3Cproquest_swepu%3E2312264445%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312264445&rft_id=info:pmid/31502665&rfr_iscdi=true