Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-04, Vol.222 (2), p.768-784
Hauptverfasser: Kumarathunge, Dushan P., Medlyn, Belinda E., Drake, John E., Tjoelker, Mark G., Aspinwall, Michael J., Battaglia, Michael, Cano, Francisco J., Carter, Kelsey R., Cavaleri, Molly A., Cernusak, Lucas A., Chambers, Jeffrey Q., Crous, Kristine Y., De Kauwe, Martin G., Dillaway, Dylan N., Dreyer, Erwin, Ellsworth, David S., Ghannoum, Oula, Han, Qingmin, Hikosaka, Kouki, Jensen, Anna M., Kelly, Jeff W. G., Kruger, Eric L., Mercado, Lina M., Onoda, Yusuke, Reich, Peter B., Rogers, Alistair, Slot, Martijn, Smith, Nicholas G., Tarvainen, Lasse, Tissue, David T., Togashi, Henrique F., Tribuzy, Edgard S., Uddling, Johan, Vårhammar, Angelica, Wallin, Göran, Warren, Jeffrey M., Way, Danielle A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 784
container_issue 2
container_start_page 768
container_title The New phytologist
container_volume 222
creator Kumarathunge, Dushan P.
Medlyn, Belinda E.
Drake, John E.
Tjoelker, Mark G.
Aspinwall, Michael J.
Battaglia, Michael
Cano, Francisco J.
Carter, Kelsey R.
Cavaleri, Molly A.
Cernusak, Lucas A.
Chambers, Jeffrey Q.
Crous, Kristine Y.
De Kauwe, Martin G.
Dillaway, Dylan N.
Dreyer, Erwin
Ellsworth, David S.
Ghannoum, Oula
Han, Qingmin
Hikosaka, Kouki
Jensen, Anna M.
Kelly, Jeff W. G.
Kruger, Eric L.
Mercado, Lina M.
Onoda, Yusuke
Reich, Peter B.
Rogers, Alistair
Slot, Martijn
Smith, Nicholas G.
Tarvainen, Lasse
Tissue, David T.
Togashi, Henrique F.
Tribuzy, Edgard S.
Uddling, Johan
Vårhammar, Angelica
Wallin, Göran
Warren, Jeffrey M.
Way, Danielle A.
description The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.
doi_str_mv 10.1111/nph.15668
format Article
fullrecord <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_100117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26629290</jstor_id><sourcerecordid>26629290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</originalsourceid><addsrcrecordid>eNp1kk2P0zAQhiMEYsvCgR8AiuACEun6I3bsY7V8FKkCDivEzXKcSZvKtbOxw6r_HrfZLQKplqWRx8_7emxPlr3EaI7TuHL9Zo4Z5-JRNsMll4XAtHqczRAiouAl_3WRPQthixCSjJOn2QVFTFZpzjK_MMZ2Ox0773Ltmlw3uo_T0vhd7x24GHLf5nEDeYRdD4OO4wB5Az24BpyBw25vtYt5v_HRh71LbOhCruNRtba-1jYPRlt4nj1ptQ3w4j5eZjefP91cL4vV9y9frxerwnBRiqKGqmF1QynUrWBcUyEJtK0kGAiXTIKhpBQNJbQlhjJoWYNqJEBibDQ39DKbT7bhDvqxVv2Q7jjsldedCnas9XAIKoDCCGFcJUFxVrAee5VS6yNPBOIVS_yHs_zH7udC-WGtrBuVwIjThL-ZcB9iqsB0EczGeOfARIVLyRE61PB-gjba_mO4XKzUIYcIJ6KS7DdO7LuJ7Qd_O0KIatcFAzZ9A_gxKEIxI4IkPKFv_0O3fhxcen1FGJa8RJzIv4ebwYcwQHuqACN16DKVukwduyyxr-8dx3oHzYl8aKsEXE3AXWdhf95JffuxfLB8NSm2IfrhpCA81UYkon8AaVjmzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519640629</pqid></control><display><type>article</type><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A.</creator><creatorcontrib>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Sveriges lantbruksuniversitet</creatorcontrib><description>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15668</identifier><identifier>PMID: 30597597</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>AC i curves ; Acclimation ; Acclimatization ; Acclimatization - drug effects ; Acclimatization - physiology ; ACi curves ; Adaptation ; Algorithms ; Ambient temperature ; Biologi ; Biological Sciences ; C3 plants ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Cell Respiration - drug effects ; Climate ; Climate of origin ; Climate Research ; Conductance ; data collection ; Datasets ; ecosystems ; Electron Transport - drug effects ; Environmental changes ; Environmental Science ; ENVIRONMENTAL SCIENCES ; Forestry and Wood Technology ; global vegetation models (GVMs) ; Growth temperature ; J max ; Jmax ; Klimatforskning ; Life Sciences ; Linear Models ; Maximum carboxylation capacity ; Maximum electron transport rate ; Miljövetenskap ; Models, Biological ; Optimization ; Photosynthesis ; Photosynthesis - drug effects ; Photosynthesis - physiology ; Plant Leaves - drug effects ; Plant Leaves - physiology ; Plants - drug effects ; Plants - metabolism ; Polar environments ; prediction ; Rainforests ; Resistance ; Ribulose-Bisphosphate Carboxylase - metabolism ; Skog och träteknik ; Stomata ; Stomatal conductance ; Temperature ; Temperature dependence ; Tropical climate ; tropical rain forests ; Tundra ; V cmax ; Vcmax</subject><ispartof>The New phytologist, 2019-04, Vol.222 (2), p.768-784</ispartof><rights>2018 The Authors © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</citedby><cites>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</cites><orcidid>0000-0003-0199-2972 ; 0000-0002-3399-9098 ; 0000-0002-8497-2047 ; 0000-0001-5113-5624 ; 0000-0001-8327-6413 ; 0000-0003-4607-5238 ; 0000-0002-9699-2272 ; 0000-0002-7575-5526 ; 0000-0003-4999-5072 ; 0000-0003-1309-4731 ; 0000-0001-5720-5865 ; 0000-0003-4069-0838 ; 0000-0001-9262-7430 ; 0000-0003-3032-9440 ; 0000-0003-1758-2169 ; 0000-0002-5359-1102 ; 0000-0001-7048-4387 ; 0000-0001-9478-7593 ; 0000-0003-3983-7847 ; 0000-0003-4801-5319 ; 0000-0001-5728-9827 ; 0000-0002-1341-0741 ; 0000-0001-6245-2342 ; 0000-0002-5558-1792 ; 0000-0003-0984-611X ; 0000-0003-4424-662X ; 0000-0001-6063-6068 ; 0000000346075238 ; 0000000157205865 ; 0000000296992272 ; 0000000183276413 ; 0000000233999098 ; 0000000330329440 ; 000000030984611X ; 0000000339837847 ; 0000000284972047 ; 0000000194787593 ; 0000000162452342 ; 0000000313094731 ; 0000000151135624 ; 0000000253591102 ; 0000000317582169 ; 0000000206804697 ; 0000000349995072 ; 0000000255581792 ; 0000000348015319 ; 0000000157289827 ; 0000000275755526 ; 0000000170484387 ; 0000000192627430 ; 0000000213410741 ; 000000034424662X ; 0000000340690838 ; 0000000301992972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26629290$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26629290$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,550,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30597597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02628795$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1496007$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-81063$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/280675$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/100117$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumarathunge, Dushan P.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Drake, John E.</creatorcontrib><creatorcontrib>Tjoelker, Mark G.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Battaglia, Michael</creatorcontrib><creatorcontrib>Cano, Francisco J.</creatorcontrib><creatorcontrib>Carter, Kelsey R.</creatorcontrib><creatorcontrib>Cavaleri, Molly A.</creatorcontrib><creatorcontrib>Cernusak, Lucas A.</creatorcontrib><creatorcontrib>Chambers, Jeffrey Q.</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Dillaway, Dylan N.</creatorcontrib><creatorcontrib>Dreyer, Erwin</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Ghannoum, Oula</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Hikosaka, Kouki</creatorcontrib><creatorcontrib>Jensen, Anna M.</creatorcontrib><creatorcontrib>Kelly, Jeff W. G.</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Mercado, Lina M.</creatorcontrib><creatorcontrib>Onoda, Yusuke</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Smith, Nicholas G.</creatorcontrib><creatorcontrib>Tarvainen, Lasse</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Togashi, Henrique F.</creatorcontrib><creatorcontrib>Tribuzy, Edgard S.</creatorcontrib><creatorcontrib>Uddling, Johan</creatorcontrib><creatorcontrib>Vårhammar, Angelica</creatorcontrib><creatorcontrib>Wallin, Göran</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Way, Danielle A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</description><subject>AC i curves</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Acclimatization - drug effects</subject><subject>Acclimatization - physiology</subject><subject>ACi curves</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>C3 plants</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Cell Respiration - drug effects</subject><subject>Climate</subject><subject>Climate of origin</subject><subject>Climate Research</subject><subject>Conductance</subject><subject>data collection</subject><subject>Datasets</subject><subject>ecosystems</subject><subject>Electron Transport - drug effects</subject><subject>Environmental changes</subject><subject>Environmental Science</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forestry and Wood Technology</subject><subject>global vegetation models (GVMs)</subject><subject>Growth temperature</subject><subject>J max</subject><subject>Jmax</subject><subject>Klimatforskning</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Maximum carboxylation capacity</subject><subject>Maximum electron transport rate</subject><subject>Miljövetenskap</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthesis - physiology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - physiology</subject><subject>Plants - drug effects</subject><subject>Plants - metabolism</subject><subject>Polar environments</subject><subject>prediction</subject><subject>Rainforests</subject><subject>Resistance</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>Skog och träteknik</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Tropical climate</subject><subject>tropical rain forests</subject><subject>Tundra</subject><subject>V cmax</subject><subject>Vcmax</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kk2P0zAQhiMEYsvCgR8AiuACEun6I3bsY7V8FKkCDivEzXKcSZvKtbOxw6r_HrfZLQKplqWRx8_7emxPlr3EaI7TuHL9Zo4Z5-JRNsMll4XAtHqczRAiouAl_3WRPQthixCSjJOn2QVFTFZpzjK_MMZ2Ox0773Ltmlw3uo_T0vhd7x24GHLf5nEDeYRdD4OO4wB5Az24BpyBw25vtYt5v_HRh71LbOhCruNRtba-1jYPRlt4nj1ptQ3w4j5eZjefP91cL4vV9y9frxerwnBRiqKGqmF1QynUrWBcUyEJtK0kGAiXTIKhpBQNJbQlhjJoWYNqJEBibDQ39DKbT7bhDvqxVv2Q7jjsldedCnas9XAIKoDCCGFcJUFxVrAee5VS6yNPBOIVS_yHs_zH7udC-WGtrBuVwIjThL-ZcB9iqsB0EczGeOfARIVLyRE61PB-gjba_mO4XKzUIYcIJ6KS7DdO7LuJ7Qd_O0KIatcFAzZ9A_gxKEIxI4IkPKFv_0O3fhxcen1FGJa8RJzIv4ebwYcwQHuqACN16DKVukwduyyxr-8dx3oHzYl8aKsEXE3AXWdhf95JffuxfLB8NSm2IfrhpCA81UYkon8AaVjmzQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Kumarathunge, Dushan P.</creator><creator>Medlyn, Belinda E.</creator><creator>Drake, John E.</creator><creator>Tjoelker, Mark G.</creator><creator>Aspinwall, Michael J.</creator><creator>Battaglia, Michael</creator><creator>Cano, Francisco J.</creator><creator>Carter, Kelsey R.</creator><creator>Cavaleri, Molly A.</creator><creator>Cernusak, Lucas A.</creator><creator>Chambers, Jeffrey Q.</creator><creator>Crous, Kristine Y.</creator><creator>De Kauwe, Martin G.</creator><creator>Dillaway, Dylan N.</creator><creator>Dreyer, Erwin</creator><creator>Ellsworth, David S.</creator><creator>Ghannoum, Oula</creator><creator>Han, Qingmin</creator><creator>Hikosaka, Kouki</creator><creator>Jensen, Anna M.</creator><creator>Kelly, Jeff W. G.</creator><creator>Kruger, Eric L.</creator><creator>Mercado, Lina M.</creator><creator>Onoda, Yusuke</creator><creator>Reich, Peter B.</creator><creator>Rogers, Alistair</creator><creator>Slot, Martijn</creator><creator>Smith, Nicholas G.</creator><creator>Tarvainen, Lasse</creator><creator>Tissue, David T.</creator><creator>Togashi, Henrique F.</creator><creator>Tribuzy, Edgard S.</creator><creator>Uddling, Johan</creator><creator>Vårhammar, Angelica</creator><creator>Wallin, Göran</creator><creator>Warren, Jeffrey M.</creator><creator>Way, Danielle A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0003-0199-2972</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0001-5113-5624</orcidid><orcidid>https://orcid.org/0000-0001-8327-6413</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><orcidid>https://orcid.org/0000-0003-4999-5072</orcidid><orcidid>https://orcid.org/0000-0003-1309-4731</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0003-4069-0838</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-3032-9440</orcidid><orcidid>https://orcid.org/0000-0003-1758-2169</orcidid><orcidid>https://orcid.org/0000-0002-5359-1102</orcidid><orcidid>https://orcid.org/0000-0001-7048-4387</orcidid><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0003-3983-7847</orcidid><orcidid>https://orcid.org/0000-0003-4801-5319</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-1341-0741</orcidid><orcidid>https://orcid.org/0000-0001-6245-2342</orcidid><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0003-0984-611X</orcidid><orcidid>https://orcid.org/0000-0003-4424-662X</orcidid><orcidid>https://orcid.org/0000-0001-6063-6068</orcidid><orcidid>https://orcid.org/0000000346075238</orcidid><orcidid>https://orcid.org/0000000157205865</orcidid><orcidid>https://orcid.org/0000000296992272</orcidid><orcidid>https://orcid.org/0000000183276413</orcidid><orcidid>https://orcid.org/0000000233999098</orcidid><orcidid>https://orcid.org/0000000330329440</orcidid><orcidid>https://orcid.org/000000030984611X</orcidid><orcidid>https://orcid.org/0000000339837847</orcidid><orcidid>https://orcid.org/0000000284972047</orcidid><orcidid>https://orcid.org/0000000194787593</orcidid><orcidid>https://orcid.org/0000000162452342</orcidid><orcidid>https://orcid.org/0000000313094731</orcidid><orcidid>https://orcid.org/0000000151135624</orcidid><orcidid>https://orcid.org/0000000253591102</orcidid><orcidid>https://orcid.org/0000000317582169</orcidid><orcidid>https://orcid.org/0000000206804697</orcidid><orcidid>https://orcid.org/0000000349995072</orcidid><orcidid>https://orcid.org/0000000255581792</orcidid><orcidid>https://orcid.org/0000000348015319</orcidid><orcidid>https://orcid.org/0000000157289827</orcidid><orcidid>https://orcid.org/0000000275755526</orcidid><orcidid>https://orcid.org/0000000170484387</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000213410741</orcidid><orcidid>https://orcid.org/000000034424662X</orcidid><orcidid>https://orcid.org/0000000340690838</orcidid><orcidid>https://orcid.org/0000000301992972</orcidid></search><sort><creationdate>201904</creationdate><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><author>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AC i curves</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Acclimatization - drug effects</topic><topic>Acclimatization - physiology</topic><topic>ACi curves</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>C3 plants</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Cell Respiration - drug effects</topic><topic>Climate</topic><topic>Climate of origin</topic><topic>Climate Research</topic><topic>Conductance</topic><topic>data collection</topic><topic>Datasets</topic><topic>ecosystems</topic><topic>Electron Transport - drug effects</topic><topic>Environmental changes</topic><topic>Environmental Science</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forestry and Wood Technology</topic><topic>global vegetation models (GVMs)</topic><topic>Growth temperature</topic><topic>J max</topic><topic>Jmax</topic><topic>Klimatforskning</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Maximum carboxylation capacity</topic><topic>Maximum electron transport rate</topic><topic>Miljövetenskap</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthesis - physiology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - physiology</topic><topic>Plants - drug effects</topic><topic>Plants - metabolism</topic><topic>Polar environments</topic><topic>prediction</topic><topic>Rainforests</topic><topic>Resistance</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>Skog och träteknik</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Tropical climate</topic><topic>tropical rain forests</topic><topic>Tundra</topic><topic>V cmax</topic><topic>Vcmax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumarathunge, Dushan P.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Drake, John E.</creatorcontrib><creatorcontrib>Tjoelker, Mark G.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Battaglia, Michael</creatorcontrib><creatorcontrib>Cano, Francisco J.</creatorcontrib><creatorcontrib>Carter, Kelsey R.</creatorcontrib><creatorcontrib>Cavaleri, Molly A.</creatorcontrib><creatorcontrib>Cernusak, Lucas A.</creatorcontrib><creatorcontrib>Chambers, Jeffrey Q.</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Dillaway, Dylan N.</creatorcontrib><creatorcontrib>Dreyer, Erwin</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Ghannoum, Oula</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Hikosaka, Kouki</creatorcontrib><creatorcontrib>Jensen, Anna M.</creatorcontrib><creatorcontrib>Kelly, Jeff W. G.</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Mercado, Lina M.</creatorcontrib><creatorcontrib>Onoda, Yusuke</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Smith, Nicholas G.</creatorcontrib><creatorcontrib>Tarvainen, Lasse</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Togashi, Henrique F.</creatorcontrib><creatorcontrib>Tribuzy, Edgard S.</creatorcontrib><creatorcontrib>Uddling, Johan</creatorcontrib><creatorcontrib>Vårhammar, Angelica</creatorcontrib><creatorcontrib>Wallin, Göran</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Way, Danielle A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumarathunge, Dushan P.</au><au>Medlyn, Belinda E.</au><au>Drake, John E.</au><au>Tjoelker, Mark G.</au><au>Aspinwall, Michael J.</au><au>Battaglia, Michael</au><au>Cano, Francisco J.</au><au>Carter, Kelsey R.</au><au>Cavaleri, Molly A.</au><au>Cernusak, Lucas A.</au><au>Chambers, Jeffrey Q.</au><au>Crous, Kristine Y.</au><au>De Kauwe, Martin G.</au><au>Dillaway, Dylan N.</au><au>Dreyer, Erwin</au><au>Ellsworth, David S.</au><au>Ghannoum, Oula</au><au>Han, Qingmin</au><au>Hikosaka, Kouki</au><au>Jensen, Anna M.</au><au>Kelly, Jeff W. G.</au><au>Kruger, Eric L.</au><au>Mercado, Lina M.</au><au>Onoda, Yusuke</au><au>Reich, Peter B.</au><au>Rogers, Alistair</au><au>Slot, Martijn</au><au>Smith, Nicholas G.</au><au>Tarvainen, Lasse</au><au>Tissue, David T.</au><au>Togashi, Henrique F.</au><au>Tribuzy, Edgard S.</au><au>Uddling, Johan</au><au>Vårhammar, Angelica</au><au>Wallin, Göran</au><au>Warren, Jeffrey M.</au><au>Way, Danielle A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>222</volume><issue>2</issue><spage>768</spage><epage>784</epage><pages>768-784</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30597597</pmid><doi>10.1111/nph.15668</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0199-2972</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0001-5113-5624</orcidid><orcidid>https://orcid.org/0000-0001-8327-6413</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><orcidid>https://orcid.org/0000-0003-4999-5072</orcidid><orcidid>https://orcid.org/0000-0003-1309-4731</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0003-4069-0838</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-3032-9440</orcidid><orcidid>https://orcid.org/0000-0003-1758-2169</orcidid><orcidid>https://orcid.org/0000-0002-5359-1102</orcidid><orcidid>https://orcid.org/0000-0001-7048-4387</orcidid><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0003-3983-7847</orcidid><orcidid>https://orcid.org/0000-0003-4801-5319</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-1341-0741</orcidid><orcidid>https://orcid.org/0000-0001-6245-2342</orcidid><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0003-0984-611X</orcidid><orcidid>https://orcid.org/0000-0003-4424-662X</orcidid><orcidid>https://orcid.org/0000-0001-6063-6068</orcidid><orcidid>https://orcid.org/0000000346075238</orcidid><orcidid>https://orcid.org/0000000157205865</orcidid><orcidid>https://orcid.org/0000000296992272</orcidid><orcidid>https://orcid.org/0000000183276413</orcidid><orcidid>https://orcid.org/0000000233999098</orcidid><orcidid>https://orcid.org/0000000330329440</orcidid><orcidid>https://orcid.org/000000030984611X</orcidid><orcidid>https://orcid.org/0000000339837847</orcidid><orcidid>https://orcid.org/0000000284972047</orcidid><orcidid>https://orcid.org/0000000194787593</orcidid><orcidid>https://orcid.org/0000000162452342</orcidid><orcidid>https://orcid.org/0000000313094731</orcidid><orcidid>https://orcid.org/0000000151135624</orcidid><orcidid>https://orcid.org/0000000253591102</orcidid><orcidid>https://orcid.org/0000000317582169</orcidid><orcidid>https://orcid.org/0000000206804697</orcidid><orcidid>https://orcid.org/0000000349995072</orcidid><orcidid>https://orcid.org/0000000255581792</orcidid><orcidid>https://orcid.org/0000000348015319</orcidid><orcidid>https://orcid.org/0000000157289827</orcidid><orcidid>https://orcid.org/0000000275755526</orcidid><orcidid>https://orcid.org/0000000170484387</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000213410741</orcidid><orcidid>https://orcid.org/000000034424662X</orcidid><orcidid>https://orcid.org/0000000340690838</orcidid><orcidid>https://orcid.org/0000000301992972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-04, Vol.222 (2), p.768-784
issn 0028-646X
1469-8137
1469-8137
language eng
recordid cdi_swepub_primary_oai_slubar_slu_se_100117
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online
subjects AC i curves
Acclimation
Acclimatization
Acclimatization - drug effects
Acclimatization - physiology
ACi curves
Adaptation
Algorithms
Ambient temperature
Biologi
Biological Sciences
C3 plants
Carbon dioxide
Carbon Dioxide - pharmacology
Cell Respiration - drug effects
Climate
Climate of origin
Climate Research
Conductance
data collection
Datasets
ecosystems
Electron Transport - drug effects
Environmental changes
Environmental Science
ENVIRONMENTAL SCIENCES
Forestry and Wood Technology
global vegetation models (GVMs)
Growth temperature
J max
Jmax
Klimatforskning
Life Sciences
Linear Models
Maximum carboxylation capacity
Maximum electron transport rate
Miljövetenskap
Models, Biological
Optimization
Photosynthesis
Photosynthesis - drug effects
Photosynthesis - physiology
Plant Leaves - drug effects
Plant Leaves - physiology
Plants - drug effects
Plants - metabolism
Polar environments
prediction
Rainforests
Resistance
Ribulose-Bisphosphate Carboxylase - metabolism
Skog och träteknik
Stomata
Stomatal conductance
Temperature
Temperature dependence
Tropical climate
tropical rain forests
Tundra
V cmax
Vcmax
title Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acclimation%20and%20adaptation%20components%20of%20the%20temperature%20dependence%20of%20plant%20photosynthesis%20at%20the%20global%20scale&rft.jtitle=The%20New%20phytologist&rft.au=Kumarathunge,%20Dushan%20P.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-04&rft.volume=222&rft.issue=2&rft.spage=768&rft.epage=784&rft.pages=768-784&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15668&rft_dat=%3Cjstor_swepu%3E26629290%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519640629&rft_id=info:pmid/30597597&rft_jstor_id=26629290&rfr_iscdi=true