Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperatu...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2019-04, Vol.222 (2), p.768-784 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 2 |
container_start_page | 768 |
container_title | The New phytologist |
container_volume | 222 |
creator | Kumarathunge, Dushan P. Medlyn, Belinda E. Drake, John E. Tjoelker, Mark G. Aspinwall, Michael J. Battaglia, Michael Cano, Francisco J. Carter, Kelsey R. Cavaleri, Molly A. Cernusak, Lucas A. Chambers, Jeffrey Q. Crous, Kristine Y. De Kauwe, Martin G. Dillaway, Dylan N. Dreyer, Erwin Ellsworth, David S. Ghannoum, Oula Han, Qingmin Hikosaka, Kouki Jensen, Anna M. Kelly, Jeff W. G. Kruger, Eric L. Mercado, Lina M. Onoda, Yusuke Reich, Peter B. Rogers, Alistair Slot, Martijn Smith, Nicholas G. Tarvainen, Lasse Tissue, David T. Togashi, Henrique F. Tribuzy, Edgard S. Uddling, Johan Vårhammar, Angelica Wallin, Göran Warren, Jeffrey M. Way, Danielle A. |
description | The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.
We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.
The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.
We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate. |
doi_str_mv | 10.1111/nph.15668 |
format | Article |
fullrecord | <record><control><sourceid>jstor_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_slubar_slu_se_100117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26629290</jstor_id><sourcerecordid>26629290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</originalsourceid><addsrcrecordid>eNp1kk2P0zAQhiMEYsvCgR8AiuACEun6I3bsY7V8FKkCDivEzXKcSZvKtbOxw6r_HrfZLQKplqWRx8_7emxPlr3EaI7TuHL9Zo4Z5-JRNsMll4XAtHqczRAiouAl_3WRPQthixCSjJOn2QVFTFZpzjK_MMZ2Ox0773Ltmlw3uo_T0vhd7x24GHLf5nEDeYRdD4OO4wB5Az24BpyBw25vtYt5v_HRh71LbOhCruNRtba-1jYPRlt4nj1ptQ3w4j5eZjefP91cL4vV9y9frxerwnBRiqKGqmF1QynUrWBcUyEJtK0kGAiXTIKhpBQNJbQlhjJoWYNqJEBibDQ39DKbT7bhDvqxVv2Q7jjsldedCnas9XAIKoDCCGFcJUFxVrAee5VS6yNPBOIVS_yHs_zH7udC-WGtrBuVwIjThL-ZcB9iqsB0EczGeOfARIVLyRE61PB-gjba_mO4XKzUIYcIJ6KS7DdO7LuJ7Qd_O0KIatcFAzZ9A_gxKEIxI4IkPKFv_0O3fhxcen1FGJa8RJzIv4ebwYcwQHuqACN16DKVukwduyyxr-8dx3oHzYl8aKsEXE3AXWdhf95JffuxfLB8NSm2IfrhpCA81UYkon8AaVjmzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2519640629</pqid></control><display><type>article</type><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SWEPUB Freely available online</source><creator>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A.</creator><creatorcontrib>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) ; Sveriges lantbruksuniversitet</creatorcontrib><description>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.
We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.
The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.
We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</description><identifier>ISSN: 0028-646X</identifier><identifier>ISSN: 1469-8137</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15668</identifier><identifier>PMID: 30597597</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>AC i curves ; Acclimation ; Acclimatization ; Acclimatization - drug effects ; Acclimatization - physiology ; ACi curves ; Adaptation ; Algorithms ; Ambient temperature ; Biologi ; Biological Sciences ; C3 plants ; Carbon dioxide ; Carbon Dioxide - pharmacology ; Cell Respiration - drug effects ; Climate ; Climate of origin ; Climate Research ; Conductance ; data collection ; Datasets ; ecosystems ; Electron Transport - drug effects ; Environmental changes ; Environmental Science ; ENVIRONMENTAL SCIENCES ; Forestry and Wood Technology ; global vegetation models (GVMs) ; Growth temperature ; J max ; Jmax ; Klimatforskning ; Life Sciences ; Linear Models ; Maximum carboxylation capacity ; Maximum electron transport rate ; Miljövetenskap ; Models, Biological ; Optimization ; Photosynthesis ; Photosynthesis - drug effects ; Photosynthesis - physiology ; Plant Leaves - drug effects ; Plant Leaves - physiology ; Plants - drug effects ; Plants - metabolism ; Polar environments ; prediction ; Rainforests ; Resistance ; Ribulose-Bisphosphate Carboxylase - metabolism ; Skog och träteknik ; Stomata ; Stomatal conductance ; Temperature ; Temperature dependence ; Tropical climate ; tropical rain forests ; Tundra ; V cmax ; Vcmax</subject><ispartof>The New phytologist, 2019-04, Vol.222 (2), p.768-784</ispartof><rights>2018 The Authors © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust</rights><rights>2018 The Authors. New Phytologist © 2018 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</citedby><cites>FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</cites><orcidid>0000-0003-0199-2972 ; 0000-0002-3399-9098 ; 0000-0002-8497-2047 ; 0000-0001-5113-5624 ; 0000-0001-8327-6413 ; 0000-0003-4607-5238 ; 0000-0002-9699-2272 ; 0000-0002-7575-5526 ; 0000-0003-4999-5072 ; 0000-0003-1309-4731 ; 0000-0001-5720-5865 ; 0000-0003-4069-0838 ; 0000-0001-9262-7430 ; 0000-0003-3032-9440 ; 0000-0003-1758-2169 ; 0000-0002-5359-1102 ; 0000-0001-7048-4387 ; 0000-0001-9478-7593 ; 0000-0003-3983-7847 ; 0000-0003-4801-5319 ; 0000-0001-5728-9827 ; 0000-0002-1341-0741 ; 0000-0001-6245-2342 ; 0000-0002-5558-1792 ; 0000-0003-0984-611X ; 0000-0003-4424-662X ; 0000-0001-6063-6068 ; 0000000346075238 ; 0000000157205865 ; 0000000296992272 ; 0000000183276413 ; 0000000233999098 ; 0000000330329440 ; 000000030984611X ; 0000000339837847 ; 0000000284972047 ; 0000000194787593 ; 0000000162452342 ; 0000000313094731 ; 0000000151135624 ; 0000000253591102 ; 0000000317582169 ; 0000000206804697 ; 0000000349995072 ; 0000000255581792 ; 0000000348015319 ; 0000000157289827 ; 0000000275755526 ; 0000000170484387 ; 0000000192627430 ; 0000000213410741 ; 000000034424662X ; 0000000340690838 ; 0000000301992972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26629290$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26629290$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,550,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30597597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02628795$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1496007$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-81063$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/280675$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/100117$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumarathunge, Dushan P.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Drake, John E.</creatorcontrib><creatorcontrib>Tjoelker, Mark G.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Battaglia, Michael</creatorcontrib><creatorcontrib>Cano, Francisco J.</creatorcontrib><creatorcontrib>Carter, Kelsey R.</creatorcontrib><creatorcontrib>Cavaleri, Molly A.</creatorcontrib><creatorcontrib>Cernusak, Lucas A.</creatorcontrib><creatorcontrib>Chambers, Jeffrey Q.</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Dillaway, Dylan N.</creatorcontrib><creatorcontrib>Dreyer, Erwin</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Ghannoum, Oula</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Hikosaka, Kouki</creatorcontrib><creatorcontrib>Jensen, Anna M.</creatorcontrib><creatorcontrib>Kelly, Jeff W. G.</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Mercado, Lina M.</creatorcontrib><creatorcontrib>Onoda, Yusuke</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Smith, Nicholas G.</creatorcontrib><creatorcontrib>Tarvainen, Lasse</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Togashi, Henrique F.</creatorcontrib><creatorcontrib>Tribuzy, Edgard S.</creatorcontrib><creatorcontrib>Uddling, Johan</creatorcontrib><creatorcontrib>Vårhammar, Angelica</creatorcontrib><creatorcontrib>Wallin, Göran</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Way, Danielle A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.
We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.
The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.
We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</description><subject>AC i curves</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Acclimatization - drug effects</subject><subject>Acclimatization - physiology</subject><subject>ACi curves</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Ambient temperature</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>C3 plants</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Cell Respiration - drug effects</subject><subject>Climate</subject><subject>Climate of origin</subject><subject>Climate Research</subject><subject>Conductance</subject><subject>data collection</subject><subject>Datasets</subject><subject>ecosystems</subject><subject>Electron Transport - drug effects</subject><subject>Environmental changes</subject><subject>Environmental Science</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Forestry and Wood Technology</subject><subject>global vegetation models (GVMs)</subject><subject>Growth temperature</subject><subject>J max</subject><subject>Jmax</subject><subject>Klimatforskning</subject><subject>Life Sciences</subject><subject>Linear Models</subject><subject>Maximum carboxylation capacity</subject><subject>Maximum electron transport rate</subject><subject>Miljövetenskap</subject><subject>Models, Biological</subject><subject>Optimization</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthesis - physiology</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - physiology</subject><subject>Plants - drug effects</subject><subject>Plants - metabolism</subject><subject>Polar environments</subject><subject>prediction</subject><subject>Rainforests</subject><subject>Resistance</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>Skog och träteknik</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Tropical climate</subject><subject>tropical rain forests</subject><subject>Tundra</subject><subject>V cmax</subject><subject>Vcmax</subject><issn>0028-646X</issn><issn>1469-8137</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>D8T</sourceid><recordid>eNp1kk2P0zAQhiMEYsvCgR8AiuACEun6I3bsY7V8FKkCDivEzXKcSZvKtbOxw6r_HrfZLQKplqWRx8_7emxPlr3EaI7TuHL9Zo4Z5-JRNsMll4XAtHqczRAiouAl_3WRPQthixCSjJOn2QVFTFZpzjK_MMZ2Ox0773Ltmlw3uo_T0vhd7x24GHLf5nEDeYRdD4OO4wB5Az24BpyBw25vtYt5v_HRh71LbOhCruNRtba-1jYPRlt4nj1ptQ3w4j5eZjefP91cL4vV9y9frxerwnBRiqKGqmF1QynUrWBcUyEJtK0kGAiXTIKhpBQNJbQlhjJoWYNqJEBibDQ39DKbT7bhDvqxVv2Q7jjsldedCnas9XAIKoDCCGFcJUFxVrAee5VS6yNPBOIVS_yHs_zH7udC-WGtrBuVwIjThL-ZcB9iqsB0EczGeOfARIVLyRE61PB-gjba_mO4XKzUIYcIJ6KS7DdO7LuJ7Qd_O0KIatcFAzZ9A_gxKEIxI4IkPKFv_0O3fhxcen1FGJa8RJzIv4ebwYcwQHuqACN16DKVukwduyyxr-8dx3oHzYl8aKsEXE3AXWdhf95JffuxfLB8NSm2IfrhpCA81UYkon8AaVjmzQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Kumarathunge, Dushan P.</creator><creator>Medlyn, Belinda E.</creator><creator>Drake, John E.</creator><creator>Tjoelker, Mark G.</creator><creator>Aspinwall, Michael J.</creator><creator>Battaglia, Michael</creator><creator>Cano, Francisco J.</creator><creator>Carter, Kelsey R.</creator><creator>Cavaleri, Molly A.</creator><creator>Cernusak, Lucas A.</creator><creator>Chambers, Jeffrey Q.</creator><creator>Crous, Kristine Y.</creator><creator>De Kauwe, Martin G.</creator><creator>Dillaway, Dylan N.</creator><creator>Dreyer, Erwin</creator><creator>Ellsworth, David S.</creator><creator>Ghannoum, Oula</creator><creator>Han, Qingmin</creator><creator>Hikosaka, Kouki</creator><creator>Jensen, Anna M.</creator><creator>Kelly, Jeff W. G.</creator><creator>Kruger, Eric L.</creator><creator>Mercado, Lina M.</creator><creator>Onoda, Yusuke</creator><creator>Reich, Peter B.</creator><creator>Rogers, Alistair</creator><creator>Slot, Martijn</creator><creator>Smith, Nicholas G.</creator><creator>Tarvainen, Lasse</creator><creator>Tissue, David T.</creator><creator>Togashi, Henrique F.</creator><creator>Tribuzy, Edgard S.</creator><creator>Uddling, Johan</creator><creator>Vårhammar, Angelica</creator><creator>Wallin, Göran</creator><creator>Warren, Jeffrey M.</creator><creator>Way, Danielle A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>ADTPV</scope><scope>AGRUY</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D92</scope><scope>ZZAVC</scope><scope>F1U</scope><orcidid>https://orcid.org/0000-0003-0199-2972</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0001-5113-5624</orcidid><orcidid>https://orcid.org/0000-0001-8327-6413</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><orcidid>https://orcid.org/0000-0003-4999-5072</orcidid><orcidid>https://orcid.org/0000-0003-1309-4731</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0003-4069-0838</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-3032-9440</orcidid><orcidid>https://orcid.org/0000-0003-1758-2169</orcidid><orcidid>https://orcid.org/0000-0002-5359-1102</orcidid><orcidid>https://orcid.org/0000-0001-7048-4387</orcidid><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0003-3983-7847</orcidid><orcidid>https://orcid.org/0000-0003-4801-5319</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-1341-0741</orcidid><orcidid>https://orcid.org/0000-0001-6245-2342</orcidid><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0003-0984-611X</orcidid><orcidid>https://orcid.org/0000-0003-4424-662X</orcidid><orcidid>https://orcid.org/0000-0001-6063-6068</orcidid><orcidid>https://orcid.org/0000000346075238</orcidid><orcidid>https://orcid.org/0000000157205865</orcidid><orcidid>https://orcid.org/0000000296992272</orcidid><orcidid>https://orcid.org/0000000183276413</orcidid><orcidid>https://orcid.org/0000000233999098</orcidid><orcidid>https://orcid.org/0000000330329440</orcidid><orcidid>https://orcid.org/000000030984611X</orcidid><orcidid>https://orcid.org/0000000339837847</orcidid><orcidid>https://orcid.org/0000000284972047</orcidid><orcidid>https://orcid.org/0000000194787593</orcidid><orcidid>https://orcid.org/0000000162452342</orcidid><orcidid>https://orcid.org/0000000313094731</orcidid><orcidid>https://orcid.org/0000000151135624</orcidid><orcidid>https://orcid.org/0000000253591102</orcidid><orcidid>https://orcid.org/0000000317582169</orcidid><orcidid>https://orcid.org/0000000206804697</orcidid><orcidid>https://orcid.org/0000000349995072</orcidid><orcidid>https://orcid.org/0000000255581792</orcidid><orcidid>https://orcid.org/0000000348015319</orcidid><orcidid>https://orcid.org/0000000157289827</orcidid><orcidid>https://orcid.org/0000000275755526</orcidid><orcidid>https://orcid.org/0000000170484387</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000213410741</orcidid><orcidid>https://orcid.org/000000034424662X</orcidid><orcidid>https://orcid.org/0000000340690838</orcidid><orcidid>https://orcid.org/0000000301992972</orcidid></search><sort><creationdate>201904</creationdate><title>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</title><author>Kumarathunge, Dushan P. ; Medlyn, Belinda E. ; Drake, John E. ; Tjoelker, Mark G. ; Aspinwall, Michael J. ; Battaglia, Michael ; Cano, Francisco J. ; Carter, Kelsey R. ; Cavaleri, Molly A. ; Cernusak, Lucas A. ; Chambers, Jeffrey Q. ; Crous, Kristine Y. ; De Kauwe, Martin G. ; Dillaway, Dylan N. ; Dreyer, Erwin ; Ellsworth, David S. ; Ghannoum, Oula ; Han, Qingmin ; Hikosaka, Kouki ; Jensen, Anna M. ; Kelly, Jeff W. G. ; Kruger, Eric L. ; Mercado, Lina M. ; Onoda, Yusuke ; Reich, Peter B. ; Rogers, Alistair ; Slot, Martijn ; Smith, Nicholas G. ; Tarvainen, Lasse ; Tissue, David T. ; Togashi, Henrique F. ; Tribuzy, Edgard S. ; Uddling, Johan ; Vårhammar, Angelica ; Wallin, Göran ; Warren, Jeffrey M. ; Way, Danielle A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6848-be7d5bd33ebf856a3892eff921e26959ec3248d323f2c35ef5d0b08e911ca6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AC i curves</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Acclimatization - drug effects</topic><topic>Acclimatization - physiology</topic><topic>ACi curves</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Ambient temperature</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>C3 plants</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Cell Respiration - drug effects</topic><topic>Climate</topic><topic>Climate of origin</topic><topic>Climate Research</topic><topic>Conductance</topic><topic>data collection</topic><topic>Datasets</topic><topic>ecosystems</topic><topic>Electron Transport - drug effects</topic><topic>Environmental changes</topic><topic>Environmental Science</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Forestry and Wood Technology</topic><topic>global vegetation models (GVMs)</topic><topic>Growth temperature</topic><topic>J max</topic><topic>Jmax</topic><topic>Klimatforskning</topic><topic>Life Sciences</topic><topic>Linear Models</topic><topic>Maximum carboxylation capacity</topic><topic>Maximum electron transport rate</topic><topic>Miljövetenskap</topic><topic>Models, Biological</topic><topic>Optimization</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthesis - physiology</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - physiology</topic><topic>Plants - drug effects</topic><topic>Plants - metabolism</topic><topic>Polar environments</topic><topic>prediction</topic><topic>Rainforests</topic><topic>Resistance</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>Skog och träteknik</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Tropical climate</topic><topic>tropical rain forests</topic><topic>Tundra</topic><topic>V cmax</topic><topic>Vcmax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumarathunge, Dushan P.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Drake, John E.</creatorcontrib><creatorcontrib>Tjoelker, Mark G.</creatorcontrib><creatorcontrib>Aspinwall, Michael J.</creatorcontrib><creatorcontrib>Battaglia, Michael</creatorcontrib><creatorcontrib>Cano, Francisco J.</creatorcontrib><creatorcontrib>Carter, Kelsey R.</creatorcontrib><creatorcontrib>Cavaleri, Molly A.</creatorcontrib><creatorcontrib>Cernusak, Lucas A.</creatorcontrib><creatorcontrib>Chambers, Jeffrey Q.</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Dillaway, Dylan N.</creatorcontrib><creatorcontrib>Dreyer, Erwin</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Ghannoum, Oula</creatorcontrib><creatorcontrib>Han, Qingmin</creatorcontrib><creatorcontrib>Hikosaka, Kouki</creatorcontrib><creatorcontrib>Jensen, Anna M.</creatorcontrib><creatorcontrib>Kelly, Jeff W. G.</creatorcontrib><creatorcontrib>Kruger, Eric L.</creatorcontrib><creatorcontrib>Mercado, Lina M.</creatorcontrib><creatorcontrib>Onoda, Yusuke</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Rogers, Alistair</creatorcontrib><creatorcontrib>Slot, Martijn</creatorcontrib><creatorcontrib>Smith, Nicholas G.</creatorcontrib><creatorcontrib>Tarvainen, Lasse</creatorcontrib><creatorcontrib>Tissue, David T.</creatorcontrib><creatorcontrib>Togashi, Henrique F.</creatorcontrib><creatorcontrib>Tribuzy, Edgard S.</creatorcontrib><creatorcontrib>Uddling, Johan</creatorcontrib><creatorcontrib>Vårhammar, Angelica</creatorcontrib><creatorcontrib>Wallin, Göran</creatorcontrib><creatorcontrib>Warren, Jeffrey M.</creatorcontrib><creatorcontrib>Way, Danielle A.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>SwePub</collection><collection>SWEPUB Linnéuniversitetet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linnéuniversitetet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Göteborgs universitet</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumarathunge, Dushan P.</au><au>Medlyn, Belinda E.</au><au>Drake, John E.</au><au>Tjoelker, Mark G.</au><au>Aspinwall, Michael J.</au><au>Battaglia, Michael</au><au>Cano, Francisco J.</au><au>Carter, Kelsey R.</au><au>Cavaleri, Molly A.</au><au>Cernusak, Lucas A.</au><au>Chambers, Jeffrey Q.</au><au>Crous, Kristine Y.</au><au>De Kauwe, Martin G.</au><au>Dillaway, Dylan N.</au><au>Dreyer, Erwin</au><au>Ellsworth, David S.</au><au>Ghannoum, Oula</au><au>Han, Qingmin</au><au>Hikosaka, Kouki</au><au>Jensen, Anna M.</au><au>Kelly, Jeff W. G.</au><au>Kruger, Eric L.</au><au>Mercado, Lina M.</au><au>Onoda, Yusuke</au><au>Reich, Peter B.</au><au>Rogers, Alistair</au><au>Slot, Martijn</au><au>Smith, Nicholas G.</au><au>Tarvainen, Lasse</au><au>Tissue, David T.</au><au>Togashi, Henrique F.</au><au>Tribuzy, Edgard S.</au><au>Uddling, Johan</au><au>Vårhammar, Angelica</au><au>Wallin, Göran</au><au>Warren, Jeffrey M.</au><au>Way, Danielle A.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-04</date><risdate>2019</risdate><volume>222</volume><issue>2</issue><spage>768</spage><epage>784</epage><pages>768-784</pages><issn>0028-646X</issn><issn>1469-8137</issn><eissn>1469-8137</eissn><abstract>The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses.
We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO₂ response curves, including data from 141 C₃ species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively.
The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin.
We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30597597</pmid><doi>10.1111/nph.15668</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0199-2972</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0001-5113-5624</orcidid><orcidid>https://orcid.org/0000-0001-8327-6413</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-7575-5526</orcidid><orcidid>https://orcid.org/0000-0003-4999-5072</orcidid><orcidid>https://orcid.org/0000-0003-1309-4731</orcidid><orcidid>https://orcid.org/0000-0001-5720-5865</orcidid><orcidid>https://orcid.org/0000-0003-4069-0838</orcidid><orcidid>https://orcid.org/0000-0001-9262-7430</orcidid><orcidid>https://orcid.org/0000-0003-3032-9440</orcidid><orcidid>https://orcid.org/0000-0003-1758-2169</orcidid><orcidid>https://orcid.org/0000-0002-5359-1102</orcidid><orcidid>https://orcid.org/0000-0001-7048-4387</orcidid><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0003-3983-7847</orcidid><orcidid>https://orcid.org/0000-0003-4801-5319</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-1341-0741</orcidid><orcidid>https://orcid.org/0000-0001-6245-2342</orcidid><orcidid>https://orcid.org/0000-0002-5558-1792</orcidid><orcidid>https://orcid.org/0000-0003-0984-611X</orcidid><orcidid>https://orcid.org/0000-0003-4424-662X</orcidid><orcidid>https://orcid.org/0000-0001-6063-6068</orcidid><orcidid>https://orcid.org/0000000346075238</orcidid><orcidid>https://orcid.org/0000000157205865</orcidid><orcidid>https://orcid.org/0000000296992272</orcidid><orcidid>https://orcid.org/0000000183276413</orcidid><orcidid>https://orcid.org/0000000233999098</orcidid><orcidid>https://orcid.org/0000000330329440</orcidid><orcidid>https://orcid.org/000000030984611X</orcidid><orcidid>https://orcid.org/0000000339837847</orcidid><orcidid>https://orcid.org/0000000284972047</orcidid><orcidid>https://orcid.org/0000000194787593</orcidid><orcidid>https://orcid.org/0000000162452342</orcidid><orcidid>https://orcid.org/0000000313094731</orcidid><orcidid>https://orcid.org/0000000151135624</orcidid><orcidid>https://orcid.org/0000000253591102</orcidid><orcidid>https://orcid.org/0000000317582169</orcidid><orcidid>https://orcid.org/0000000206804697</orcidid><orcidid>https://orcid.org/0000000349995072</orcidid><orcidid>https://orcid.org/0000000255581792</orcidid><orcidid>https://orcid.org/0000000348015319</orcidid><orcidid>https://orcid.org/0000000157289827</orcidid><orcidid>https://orcid.org/0000000275755526</orcidid><orcidid>https://orcid.org/0000000170484387</orcidid><orcidid>https://orcid.org/0000000192627430</orcidid><orcidid>https://orcid.org/0000000213410741</orcidid><orcidid>https://orcid.org/000000034424662X</orcidid><orcidid>https://orcid.org/0000000340690838</orcidid><orcidid>https://orcid.org/0000000301992972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2019-04, Vol.222 (2), p.768-784 |
issn | 0028-646X 1469-8137 1469-8137 |
language | eng |
recordid | cdi_swepub_primary_oai_slubar_slu_se_100117 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; SWEPUB Freely available online |
subjects | AC i curves Acclimation Acclimatization Acclimatization - drug effects Acclimatization - physiology ACi curves Adaptation Algorithms Ambient temperature Biologi Biological Sciences C3 plants Carbon dioxide Carbon Dioxide - pharmacology Cell Respiration - drug effects Climate Climate of origin Climate Research Conductance data collection Datasets ecosystems Electron Transport - drug effects Environmental changes Environmental Science ENVIRONMENTAL SCIENCES Forestry and Wood Technology global vegetation models (GVMs) Growth temperature J max Jmax Klimatforskning Life Sciences Linear Models Maximum carboxylation capacity Maximum electron transport rate Miljövetenskap Models, Biological Optimization Photosynthesis Photosynthesis - drug effects Photosynthesis - physiology Plant Leaves - drug effects Plant Leaves - physiology Plants - drug effects Plants - metabolism Polar environments prediction Rainforests Resistance Ribulose-Bisphosphate Carboxylase - metabolism Skog och träteknik Stomata Stomatal conductance Temperature Temperature dependence Tropical climate tropical rain forests Tundra V cmax Vcmax |
title | Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A00%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acclimation%20and%20adaptation%20components%20of%20the%20temperature%20dependence%20of%20plant%20photosynthesis%20at%20the%20global%20scale&rft.jtitle=The%20New%20phytologist&rft.au=Kumarathunge,%20Dushan%20P.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-04&rft.volume=222&rft.issue=2&rft.spage=768&rft.epage=784&rft.pages=768-784&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15668&rft_dat=%3Cjstor_swepu%3E26629290%3C/jstor_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2519640629&rft_id=info:pmid/30597597&rft_jstor_id=26629290&rfr_iscdi=true |