Inferring Interval-Valued Floating-Point Preconditions
Aggregated roundoff errors caused by floating-point arithmetic can make numerical code highly unreliable. Verified postconditions for floating-point functions can guarantee the accuracy of their results under specific preconditions on the function inputs, but how to systematically find an adequate p...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aggregated roundoff errors caused by floating-point arithmetic can make numerical code highly unreliable. Verified postconditions for floating-point functions can guarantee the accuracy of their results under specific preconditions on the function inputs, but how to systematically find an adequate precondition for a desired error bound has not been explored so far. We present two novel techniques for automatically synthesizing preconditions for floating-point functions that guarantee that user-provided accuracy requirements are satisfied. Our evaluation on a standard benchmark set shows that our approaches are complementary and able to find accurate preconditions in reasonable time. |
---|---|
DOI: | 10.1007/978-3-030-99524-9_16 |