A Single-Nucleotide Deletion in the POMP 5′ UTR Causes a Transcriptional Switch and Altered Epidermal Proteasome Distribution in KLICK Genodermatosis
KLICK syndrome is a rare autosomal-recessive skin disorder characterized by palmoplantar keratoderma, linear hyperkeratotic papules, and ichthyosiform scaling. In order to establish the genetic cause of this disorder, we collected DNA samples from eight European probands. Using high-density genome-w...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2010-04, Vol.86 (4), p.596-603 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | KLICK syndrome is a rare autosomal-recessive skin disorder characterized by palmoplantar keratoderma, linear hyperkeratotic papules, and ichthyosiform scaling. In order to establish the genetic cause of this disorder, we collected DNA samples from eight European probands. Using high-density genome-wide SNP analysis, we identified a 1.5 Mb homozygous candidate region on chromosome 13q. Sequence analysis of the ten annotated genes in the candidate region revealed homozygosity for a single-nucleotide deletion at position c.−95 in the proteasome maturation protein (POMP) gene, in all probands. The deletion is included in
POMP transcript variants with long 5′ untranslated regions (UTRs) and was associated with a marked increase of these transcript variants in keratinocytes from KLICK patients. POMP is a ubiquitously expressed protein and functions as a chaperone for proteasome maturation. Immunohistochemical analysis of skin biopsies from KLICK patients revealed an altered epidermal distribution of POMP, the proteasome subunit proteins α7 and β5, and the ER stress marker CHOP. Our results suggest that KLICK syndrome is caused by a single-nucleotide deletion in the 5′ UTR of
POMP resulting in altered distribution of POMP in epidermis and a perturbed formation of the outermost layers of the skin. These findings imply that the proteasome has a prominent role in the terminal differentiation of human epidermis. |
---|---|
ISSN: | 0002-9297 1537-6605 1537-6605 |
DOI: | 10.1016/j.ajhg.2010.02.018 |