Seasonal variation in the correlation of airglow temperature and emission rate

The hydroxyl (OH) rotational temperature and band emission rate have been derived using year‐round, ground‐based measurements of the infrared OH nightglow from Sweden from 1991 to 2002. Recent work has suggested that, during the winter, all scales of dynamical variations of radiance and temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2007-09, Vol.34 (17), p.L17802-n/a
Hauptverfasser: Espy, P. J., Stegman, J., Forkman, P., Murtagh, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hydroxyl (OH) rotational temperature and band emission rate have been derived using year‐round, ground‐based measurements of the infrared OH nightglow from Sweden from 1991 to 2002. Recent work has suggested that, during the winter, all scales of dynamical variations of radiance and temperature arise from vertical motions, implying that the effective source concentrations of atomic oxygen are constant. The present data show correlations between temperature and radiance both during winter and summer that are consistent with those observed in that previous work. However, during the transition to summer there is a rapid decrease in the temperature and its variation that is not reflected in the band radiance, suggesting that only the shorter‐scale variations are accompanied by significant vertical motion. This indicates that the shorter‐scale dynamical variations occur against an independent, seasonally changing background temperature profile in a way that is consistent with that predicted by gravity‐wave models.
ISSN:0094-8276
1944-8007
DOI:10.1029/2007GL031034