Experiments and efficient simulations of distortions of laser beam–welded thin-sheet close beam steel structures
In this article, geometrical distortions of steel structures due to laser beam welding were analyzed. Two 700-mm-long U-beam structures were welded in overlap configurations: a double U-beam structure and a U-beam/flat structure. The structures were in different material combinations from mild steel...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2019-02, Vol.233 (3), p.787-796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, geometrical distortions of steel structures due to laser beam welding were analyzed. Two 700-mm-long U-beam structures were welded in overlap configurations: a double U-beam structure and a U-beam/flat structure. The structures were in different material combinations from mild steel to ultrahigh-strength steel welded with different process parameters. Different measures of distortions of the U-beam structures were evaluated after cooling. Significant factors of the welding process and the geometry of the structures were identified. Furthermore, welding distortions were modeled using two predictive finite element simulation models. The previously known shrinkage method and a newly developed time-efficient simulation method were evaluated. The new model describes the effects of expansion and shrinkage of the weld zone during welding and material plasticity at elevated temperatures. The new simulation method has reasonable computation times for industrial applications and improved agreement with experiments compared to the often used so-called shrinkage method. |
---|---|
ISSN: | 0954-4054 2041-2975 2041-2975 |
DOI: | 10.1177/0954405417749625 |