Multi‑objective Pareto and GAs nonlinear optimization approach for fyback transformer

Design and optimization of high-frequency inductive components is a complex task because of the huge number of variables to manipulate, the strong interdependence and the interaction between variables, the nonlinear variation of some design variables as well as the problem nonlinearity. This paper p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2019, Vol.101 (3), p.995
Hauptverfasser: Barg, Sobhi, Bertilsson, Kent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Design and optimization of high-frequency inductive components is a complex task because of the huge number of variables to manipulate, the strong interdependence and the interaction between variables, the nonlinear variation of some design variables as well as the problem nonlinearity. This paper proposes a multi-objective design methodology of a 200-W flyback transformer in continuous conduction mode using genetic algorithms and Pareto optimality concept. The objective is to minimize loss, volume and cost of the transformer. Design variables such as the duty cycle, the winding configuration and the core shape, which have great effects on the former objectives but were neglected in previous works, are considered in this paper. The optimization is performed in discrete research space at different switching frequencies. In total, 24 magnetic materials, 6 core shapes and 2 winding configurations are considered in the database. Accurate volume and cost models are also developed to deal with the optimization in the discrete research space. The bi-objective (loss–volume) and tri-objective (loss–volume–cost) optimization results are presented, and the variations of the design variables are analyzed for the case of 60 kHz. An example of a design (30 kHz) is experimentally verified. The registered efficiency is 88% at full load.
ISSN:1432-0487
0948-7921
DOI:10.1007/s00202-019-00836-3