Effect of vibration magnitude, vibration spectrum and muscle tension on apparent mass and cross axis transfer functions during whole-body vibration exposure

Twelve seated male subjects were exposed to 15 vibration conditions to investigate the nature and mechanisms of the non-linearity in biomechanical response. Subjects were exposed to three groups of stimuli: Group A comprised three repeats of random vertical vibration at 0.5, 1.0 and 1.5 m s −2 r.m.s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2006-01, Vol.39 (16), p.3062-3070
Hauptverfasser: Mansfield, N.J., Holmlund, P., Lundström, R., Lenzuni, P., Nataletti, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Twelve seated male subjects were exposed to 15 vibration conditions to investigate the nature and mechanisms of the non-linearity in biomechanical response. Subjects were exposed to three groups of stimuli: Group A comprised three repeats of random vertical vibration at 0.5, 1.0 and 1.5 m s −2 r.m.s. with subjects sitting in a relaxed upright posture. Group B used the same vibration stimuli as Group A, but with subjects sitting in a ‘tense’ posture. Group C used vibration where the vibration spectrum was dominated by either low-frequency motion (2–7 Hz), high-frequency motion (7–20 Hz) or a 1.0 m s −2 r.m.s. sinusoid at the frequency of the second peak in apparent mass (about 10–14 Hz) added to 0.5 m s −2 r.m.s. random vibration. In the relaxed posture, frequencies of the primary peak in apparent mass decreased with increased vibration magnitude. In the tense posture, the extent of the non-linearity was reduced. For the low-frequency dominated stimulus, the primary peak frequency was lower than that for the high-frequency dominated stimulus indicating that the frequency of the primary peak in the apparent mass is dominated by the magnitude of the vibration encompassing the peak. Cross-axis transfer functions showed peaks of about 15–20% and 5% of the magnitudes of the peaks in the apparent mass for x- and y-direction transfer functions, respectively, in the relaxed posture. In the tense posture, cross-axis transfer functions reduced in magnitude with increased vibration, likely indicating a reduced fore-aft pitching of the body with increased tension, supporting the hypothesis that pitching contributes to the non-linearity in apparent mass.
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2005.09.024