Deep level defects in electron-irradiated 4H SiC epitaxial layers
Deep level defects in electron-irradiated 4H SiC epitaxial layers grown by chemical vapor deposition were studied using deep level transient spectroscopy. The measurements performed on electron-irradiated p+n junctions in the temperature range 100–750 K revealed several electron traps and one hole t...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Physics 1997-05, Vol.81 (9), p.6155-6159 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep level defects in electron-irradiated 4H SiC epitaxial layers grown by chemical vapor deposition were studied using deep level transient spectroscopy. The measurements performed on electron-irradiated p+n junctions in the temperature range 100–750 K revealed several electron traps and one hole trap with thermal ionization energies ranging from 0.35 to 1.65 eV. Most of these defects were already observed at a dose of irradiation as low as ≈5×1013 cm−2. Dose dependence and annealing behavior of the defects were investigated. For two of these electron traps, the electron capture cross section was measured. From the temperature dependence studies, the capture cross section of these two defects are shown to be temperature independent. |
---|---|
ISSN: | 0021-8979 1089-7550 1089-7550 |
DOI: | 10.1063/1.364397 |