Metal‐Organic Framework Glass Catalysts from Melting Glass‐Forming Cobalt‐Based Zeolitic Imidazolate Framework for Boosting Photoelectrochemical Water Oxidation

Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal–organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF gla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-08, Vol.62 (32), p.e202306420-n/a
Hauptverfasser: Song, Yurou, Ren, Yanhan, Cheng, Huijie, Jiao, Yuye, Shi, Shaobo, Gao, Lihua, Xie, Huimin, Gao, Junfeng, Sun, Licheng, Hou, Jungang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sluggish oxygen evolution kinetics and serious charge recombination restrict the development of photoelectrochemical (PEC) water splitting. The advancement of novel metal–organic frameworks (MOFs) catalysts bears practical significance for improving PEC water splitting performance. Herein, a MOF glass catalyst through melting glass‐forming cobalt‐based zeolitic imidazolate framework (Co‐agZIF‐62) was introduced on various metal oxide (MO: Fe2O3, WO3 and BiVO4) semiconductor substrates coupled with NiO hole transport layer, constructing the integrated Co‐agZIF‐62/NiO/MO photoanodes. Owing to the excellent conductivity, stability and open active sites of MOF glass, Co‐agZIF‐62/NiO/MO photoanodes exhibit a significantly enhanced photoelectrochemical water oxidation activity and stability in comparison to pristine MO photoanodes. From experimental analyses and density functional theory calculations, Co‐agZIF‐62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction (OER), and thus improve PEC performance. This MOF glass not only serves as an excellent OER cocatalyst on tunable photoelectrodes, but also enables promising opportunities for PEC devices for solar energy conversion. The advancement of novel metal–organic frameworks (MOFs) catalysts bears practical significance for improving photoelectrochemical (PEC) water splitting performance. A MOF glass catalyst was synthesized via a melting glass‐forming cobalt‐based zeolitic imidazolate framework (Co‐agZIF‐62). Introducing the MOF glass catalyst on various metal oxide semiconductor substrates coupled with NiO hole transport layer constructs the integrated Co‐agZIF‐62/NiO/MO photoanodes. From experimental analyses and density functional theory calculations, Co‐agZIF‐62 can effectively promote charge transfer and separation, improve carrier mobility, accelerate the kinetics of oxygen evolution reaction, and thus improve PEC performance.
ISSN:1433-7851
1521-3773
1521-3773
DOI:10.1002/anie.202306420