Field-induced quantum criticality in the Kitaev system α−RuCl3
α−RuCl3 has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaev's honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to 0.4K in applied magnetic fields...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-07, Vol.96 (4) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | α−RuCl3 has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaev's honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to 0.4K in applied magnetic fields up to 9T for fields parallel to the ab plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to μ0Hc≈6.9 T. Above Hc, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point at Hc; this is supported by universal scaling behavior near Hc. Remarkably, the data also reveal the existence of a small characteristic energy scale well below 1 meV, above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a J1−K1−Γ1−J3 honeycomb model. |
---|---|
ISSN: | 2469-9950 2469-9969 2469-9969 |
DOI: | 10.1103/PhysRevB.96.041405 |