Chronopotentiometric Carbonate Detection with All-Solid-State lonophore-Based Electrodes
We present here for the first time an all-solid-state chronopotentiometric ion sensing system based on selective ionophores, specifically for the carbonate anion. A chronopotentiometric readout is attractive because it may allow one to obtain complementary information on the sample speciation compar...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2014-07, Vol.86 (13), p.6307 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present here for the first time an all-solid-state chronopotentiometric ion sensing system based on selective ionophores, specifically for the carbonate anion. A chronopotentiometric readout is attractive because it may allow one to obtain complementary information on the sample speciation compared to zero-current potentiometry and detect the sum of labile carbonate species instead of only ion activity. Ferrocene covalently attached to the PVC polymeric chain acts as an ion-to-electron transducer and provides the driving force to initiate the sensing process at the membrane–sample interface. The incorporation of a selective ionophore for carbonate allows one to determine this anion in a background electrolyte. Various inner electrolyte and all-solid-state-membrane configurations are explored, and localized carbonate depletion is only observed for systems that do not contain ion-exchanger additives. The square root of the transition times extracted from the inflection point of the chronopotentiograms as a function of carbonate specie concentration follows a linear relationship. The observed linear range is 0.03–0.35 mM in a pH range of 9.50–10.05. By applying the Sand equation, the diffusion coefficient of carbonate is calculated as (9.03 ± 0.91) 10–6 cm2 s–1, which corresponds to the established value. The reproducibility of assessed carbonate is better than 1%. Additionally, carbonate is monitored during titrimetric analysis as a precursor to an in situ environmental determination. Based on these results, Fc-PVC membranes doped with ionophores may form the basis of a new family of passive/active all-solid-state ion selective electrodes interrogated by a current pulse. |
---|---|
ISSN: | 1520-6882 0003-2700 |
DOI: | 10.1021/ac5004163 |