Chemical Properties and Thermal Behaviour of Kraft Lignins
Research concerning lignin has increased during the last years due to its renewability and ready availability in black liquor at pulp mills. Today, the kraft lignin found in black liquor is used as a fuel to gain energy in the recovery boiler at the mill. However, a new isolation concept, LignoBoost...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research concerning lignin has increased during the last years due to its renewability and ready availability in black liquor at pulp mills. Today, the kraft lignin found in black liquor is used as a fuel to gain energy in the recovery boiler at the mill. However, a new isolation concept, LignoBoost®, has enabled isolation of part of the lignin while allowing the use of black liquor as a fuel. This isolated lignin can be utilised as a fuel in, for example, thermal power stations or further upgraded to more value-added products. In this context, the most interesting value-added product is carbon fibre. The demand for carbon fibre has increased, but the biggest obstacle for a more extended use is the high production cost. About half of the production cost is related to the raw material.
In this work, the possibility of using kraft lignin as a precursor for carbon fibre production has been investigated through fundamental studies. Kraft lignins originating from birch, Eucalyptus globulus , softwoods and softwoods from liner production have been studied. By separating the lignin while still in solution in the black liquor, unwanted large particles such as carbohydrates can easily be removed. After isolation according to the LignoBoost process and purification with the use of an ion-exchanger, the lignins have been both chemically and thermally characterised. Identification of the released compounds at different temperatures has been performed because only 40% of carbon relative to original lignin remains, down from theoretical 60% after thermal treatment up to 1000°C. The main released compounds were phenols, as revealed by pyrolysis-GC/MS. Additionally, a pre-oxidation was done in order to try to stabilise the lignins. It was shown that an oxidation prior to the thermal treatment increases the yield by more than 10% and that the main release of compounds takes place between 400°C and 600°C. Fractionated lignin is better qualified as raw material for carbon fibre production because it is purer and its softening temperature can be detected. Fractionated kraft lignins from all investigated wood sources have high possibilities to act as precursors for the manufacture of carbon fibre. |
---|