Study of Filtering the Weather Adverse Effects to Object Detection

The work is devoted to the study of the problem of detecting objects of various sizes on the example of an open dataset using the Yolo v5 [1] neural network model. The main attention is paid to the study of the effect of pre-filtering of images on the results of object detection and the development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei 2024-06, Vol.55 (3), p.329-333
Hauptverfasser: Shtekhin, S., Karachev, D., Stadnik, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3
container_start_page 329
container_title Physics of particles and nuclei
container_volume 55
creator Shtekhin, S.
Karachev, D.
Stadnik, A.
description The work is devoted to the study of the problem of detecting objects of various sizes on the example of an open dataset using the Yolo v5 [1] neural network model. The main attention is paid to the study of the effect of pre-filtering of images on the results of object detection and the development of a methodology for assessing such an effect. In addition, the paper etestuates the effect of filtering distortions from rain and snow on the results of object detection according to the proposed method. The results obtained can be useful for improving the accuracy of detecting objects in images with various types of distortion and are applied in various fields, such as automatic car driving, transport monitoring, etc.
doi_str_mv 10.1134/S1063779624030766
format Article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1134_S1063779624030766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063779624030766</sourcerecordid><originalsourceid>FETCH-LOGICAL-s128t-ae151d4281f1ef978f9a5c266212802dbcd668858af717061a06093be96a665e3</originalsourceid><addsrcrecordid>eNplkMFKAzEURYMoWKsf4C4_MJqXTF6SZa1tFQpdVHE5ZGZedIbSkUkq-Pdm0J2rc-HAfY_L2C2IOwBV3u9BoDLGoSyFEgbxjM1AKyis1u4856yLyV-yqxh7IQBA2xl72KdT-82HwNfdIdHYHd95-iD-Rj5j5Iv2i8ZIfBUCNSnyNPBd3efIHylldMPxml0Ef4h088c5e12vXpZPxXa3eV4utkUEaVPhCTS0pbQQgIIzNjivG4kosxayrZsW0VptfTBgBIIXKJyqyaFH1KTmTP72xs_pTRqrfjiNx3yyAlFNK1T_VlA_1ptOTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Study of Filtering the Weather Adverse Effects to Object Detection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shtekhin, S. ; Karachev, D. ; Stadnik, A.</creator><creatorcontrib>Shtekhin, S. ; Karachev, D. ; Stadnik, A.</creatorcontrib><description>The work is devoted to the study of the problem of detecting objects of various sizes on the example of an open dataset using the Yolo v5 [1] neural network model. The main attention is paid to the study of the effect of pre-filtering of images on the results of object detection and the development of a methodology for assessing such an effect. In addition, the paper etestuates the effect of filtering distortions from rain and snow on the results of object detection according to the proposed method. The results obtained can be useful for improving the accuracy of detecting objects in images with various types of distortion and are applied in various fields, such as automatic car driving, transport monitoring, etc.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779624030766</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Physics of particles and nuclei, 2024-06, Vol.55 (3), p.329-333</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 1063-7796, Physics of Particles and Nuclei, 2024, Vol. 55, No. 3, pp. 329–333. © Pleiades Publishing, Ltd., 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063779624030766$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063779624030766$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shtekhin, S.</creatorcontrib><creatorcontrib>Karachev, D.</creatorcontrib><creatorcontrib>Stadnik, A.</creatorcontrib><title>Study of Filtering the Weather Adverse Effects to Object Detection</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><description>The work is devoted to the study of the problem of detecting objects of various sizes on the example of an open dataset using the Yolo v5 [1] neural network model. The main attention is paid to the study of the effect of pre-filtering of images on the results of object detection and the development of a methodology for assessing such an effect. In addition, the paper etestuates the effect of filtering distortions from rain and snow on the results of object detection according to the proposed method. The results obtained can be useful for improving the accuracy of detecting objects in images with various types of distortion and are applied in various fields, such as automatic car driving, transport monitoring, etc.</description><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkMFKAzEURYMoWKsf4C4_MJqXTF6SZa1tFQpdVHE5ZGZedIbSkUkq-Pdm0J2rc-HAfY_L2C2IOwBV3u9BoDLGoSyFEgbxjM1AKyis1u4856yLyV-yqxh7IQBA2xl72KdT-82HwNfdIdHYHd95-iD-Rj5j5Iv2i8ZIfBUCNSnyNPBd3efIHylldMPxml0Ef4h088c5e12vXpZPxXa3eV4utkUEaVPhCTS0pbQQgIIzNjivG4kosxayrZsW0VptfTBgBIIXKJyqyaFH1KTmTP72xs_pTRqrfjiNx3yyAlFNK1T_VlA_1ptOTw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Shtekhin, S.</creator><creator>Karachev, D.</creator><creator>Stadnik, A.</creator><general>Pleiades Publishing</general><scope/></search><sort><creationdate>20240601</creationdate><title>Study of Filtering the Weather Adverse Effects to Object Detection</title><author>Shtekhin, S. ; Karachev, D. ; Stadnik, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s128t-ae151d4281f1ef978f9a5c266212802dbcd668858af717061a06093be96a665e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shtekhin, S.</creatorcontrib><creatorcontrib>Karachev, D.</creatorcontrib><creatorcontrib>Stadnik, A.</creatorcontrib><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shtekhin, S.</au><au>Karachev, D.</au><au>Stadnik, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Filtering the Weather Adverse Effects to Object Detection</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>55</volume><issue>3</issue><spage>329</spage><epage>333</epage><pages>329-333</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>The work is devoted to the study of the problem of detecting objects of various sizes on the example of an open dataset using the Yolo v5 [1] neural network model. The main attention is paid to the study of the effect of pre-filtering of images on the results of object detection and the development of a methodology for assessing such an effect. In addition, the paper etestuates the effect of filtering distortions from rain and snow on the results of object detection according to the proposed method. The results obtained can be useful for improving the accuracy of detecting objects in images with various types of distortion and are applied in various fields, such as automatic car driving, transport monitoring, etc.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779624030766</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7796
ispartof Physics of particles and nuclei, 2024-06, Vol.55 (3), p.329-333
issn 1063-7796
1531-8559
language eng
recordid cdi_springer_journals_10_1134_S1063779624030766
source SpringerLink Journals - AutoHoldings
subjects Particle and Nuclear Physics
Physics
Physics and Astronomy
title Study of Filtering the Weather Adverse Effects to Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Filtering%20the%20Weather%20Adverse%20Effects%20to%20Object%20Detection&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Shtekhin,%20S.&rft.date=2024-06-01&rft.volume=55&rft.issue=3&rft.spage=329&rft.epage=333&rft.pages=329-333&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779624030766&rft_dat=%3Cspringer%3E10_1134_S1063779624030766%3C/springer%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true