On the Fleming-Harrington test for late effects in prevention randomized controlled trials
Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Flemin...
Gespeichert in:
Veröffentlicht in: | Journal of statistical theory and practice 2017-07, Vol.11 (3), p.418-435 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 435 |
---|---|
container_issue | 3 |
container_start_page | 418 |
container_title | Journal of statistical theory and practice |
container_volume | 11 |
creator | Garès, Valérie Andrieu, Sandrine Dupuy, Jean-François Savy, Nicolas |
description | Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose
as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia. |
doi_str_mv | 10.1080/15598608.2017.1295889 |
format | Article |
fullrecord | <record><control><sourceid>hal_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_15598608_2017_1295889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01539213v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnRxFp9BBO2LqbCMD-ws2msNWnSjW7cEErB0jDQAGrq08tkape64dycnHNz-QC4xWiCEUX3uK4ZbRCdlAi3E1yymlJ2Bka9X9AGN-enGdFLcBXjDqEGI0JG4G3lYNoqOLeqM-69WIgQsiafbRUT1D5AK5KCSmslU4TGwX1Qn8olkzNBuI3vzLfaQOldCt7aPKZghI3X4EJnUTdHHYPX-ePLbFEsV0_Ps-mykBWhqSgRqVtBdaUbpXG-VmApsWSYtkiK9bqsiKKMaFmtWVO3RCKhygpVkjCF8kPG4G7YuxWW74PpRDhwLwxfTJe89xCuCSsx-cQ5Ww9ZGXyMQelTASPew-S_MHkPkx9h5l4z9OK-x6MC3_mP4PK3_i0-DEXjMspOfPlgNzyJg_VBZ3rSRE7-XvEDOuqMFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><source>Springer Nature - Complete Springer Journals</source><creator>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</creator><creatorcontrib>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</creatorcontrib><description>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose
as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</description><identifier>ISSN: 1559-8608</identifier><identifier>ISSN: 1559-8616</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2017.1295889</identifier><language>eng</language><publisher>Cham: Taylor & Francis</publisher><subject>asymptotic relative efficiency ; Hypothesis test ; Mathematics ; prevention trial ; Probability Theory and Stochastic Processes ; sample size calculation ; Statistical Theory and Methods ; Statistics ; survival data analysis ; weighted logrank tests</subject><ispartof>Journal of statistical theory and practice, 2017-07, Vol.11 (3), p.418-435</ispartof><rights>2017 Grace Scientific Publishing, LLC 2017</rights><rights>Grace Scientific Publishing 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</citedby><cites>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</cites><orcidid>0000-0001-9839-9598 ; 0000-0002-1142-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2017.1295889$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2017.1295889$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01539213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garès, Valérie</creatorcontrib><creatorcontrib>Andrieu, Sandrine</creatorcontrib><creatorcontrib>Dupuy, Jean-François</creatorcontrib><creatorcontrib>Savy, Nicolas</creatorcontrib><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose
as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</description><subject>asymptotic relative efficiency</subject><subject>Hypothesis test</subject><subject>Mathematics</subject><subject>prevention trial</subject><subject>Probability Theory and Stochastic Processes</subject><subject>sample size calculation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>survival data analysis</subject><subject>weighted logrank tests</subject><issn>1559-8608</issn><issn>1559-8616</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEUhYnRxFp9BBO2LqbCMD-ws2msNWnSjW7cEErB0jDQAGrq08tkape64dycnHNz-QC4xWiCEUX3uK4ZbRCdlAi3E1yymlJ2Bka9X9AGN-enGdFLcBXjDqEGI0JG4G3lYNoqOLeqM-69WIgQsiafbRUT1D5AK5KCSmslU4TGwX1Qn8olkzNBuI3vzLfaQOldCt7aPKZghI3X4EJnUTdHHYPX-ePLbFEsV0_Ps-mykBWhqSgRqVtBdaUbpXG-VmApsWSYtkiK9bqsiKKMaFmtWVO3RCKhygpVkjCF8kPG4G7YuxWW74PpRDhwLwxfTJe89xCuCSsx-cQ5Ww9ZGXyMQelTASPew-S_MHkPkx9h5l4z9OK-x6MC3_mP4PK3_i0-DEXjMspOfPlgNzyJg_VBZ3rSRE7-XvEDOuqMFw</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Garès, Valérie</creator><creator>Andrieu, Sandrine</creator><creator>Dupuy, Jean-François</creator><creator>Savy, Nicolas</creator><general>Taylor & Francis</general><general>Springer International Publishing</general><general>Grace Scientific Pub</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid><orcidid>https://orcid.org/0000-0002-1142-770X</orcidid></search><sort><creationdate>20170703</creationdate><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><author>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>asymptotic relative efficiency</topic><topic>Hypothesis test</topic><topic>Mathematics</topic><topic>prevention trial</topic><topic>Probability Theory and Stochastic Processes</topic><topic>sample size calculation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>survival data analysis</topic><topic>weighted logrank tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garès, Valérie</creatorcontrib><creatorcontrib>Andrieu, Sandrine</creatorcontrib><creatorcontrib>Dupuy, Jean-François</creatorcontrib><creatorcontrib>Savy, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garès, Valérie</au><au>Andrieu, Sandrine</au><au>Dupuy, Jean-François</au><au>Savy, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2017-07-03</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>418</spage><epage>435</epage><pages>418-435</pages><issn>1559-8608</issn><issn>1559-8616</issn><eissn>1559-8616</eissn><abstract>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose
as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</abstract><cop>Cham</cop><pub>Taylor & Francis</pub><doi>10.1080/15598608.2017.1295889</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid><orcidid>https://orcid.org/0000-0002-1142-770X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-8608 |
ispartof | Journal of statistical theory and practice, 2017-07, Vol.11 (3), p.418-435 |
issn | 1559-8608 1559-8616 1559-8616 |
language | eng |
recordid | cdi_springer_journals_10_1080_15598608_2017_1295889 |
source | Springer Nature - Complete Springer Journals |
subjects | asymptotic relative efficiency Hypothesis test Mathematics prevention trial Probability Theory and Stochastic Processes sample size calculation Statistical Theory and Methods Statistics survival data analysis weighted logrank tests |
title | On the Fleming-Harrington test for late effects in prevention randomized controlled trials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fleming-Harrington%20test%20for%20late%20effects%20in%20prevention%20randomized%20controlled%20trials&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Gar%C3%A8s,%20Val%C3%A9rie&rft.date=2017-07-03&rft.volume=11&rft.issue=3&rft.spage=418&rft.epage=435&rft.pages=418-435&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2017.1295889&rft_dat=%3Chal_sprin%3Eoai_HAL_hal_01539213v1%3C/hal_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |