On the Fleming-Harrington test for late effects in prevention randomized controlled trials

Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Flemin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical theory and practice 2017-07, Vol.11 (3), p.418-435
Hauptverfasser: Garès, Valérie, Andrieu, Sandrine, Dupuy, Jean-François, Savy, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 3
container_start_page 418
container_title Journal of statistical theory and practice
container_volume 11
creator Garès, Valérie
Andrieu, Sandrine
Dupuy, Jean-François
Savy, Nicolas
description Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.
doi_str_mv 10.1080/15598608.2017.1295889
format Article
fullrecord <record><control><sourceid>hal_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_15598608_2017_1295889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01539213v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnRxFp9BBO2LqbCMD-ws2msNWnSjW7cEErB0jDQAGrq08tkape64dycnHNz-QC4xWiCEUX3uK4ZbRCdlAi3E1yymlJ2Bka9X9AGN-enGdFLcBXjDqEGI0JG4G3lYNoqOLeqM-69WIgQsiafbRUT1D5AK5KCSmslU4TGwX1Qn8olkzNBuI3vzLfaQOldCt7aPKZghI3X4EJnUTdHHYPX-ePLbFEsV0_Ps-mykBWhqSgRqVtBdaUbpXG-VmApsWSYtkiK9bqsiKKMaFmtWVO3RCKhygpVkjCF8kPG4G7YuxWW74PpRDhwLwxfTJe89xCuCSsx-cQ5Ww9ZGXyMQelTASPew-S_MHkPkx9h5l4z9OK-x6MC3_mP4PK3_i0-DEXjMspOfPlgNzyJg_VBZ3rSRE7-XvEDOuqMFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><source>Springer Nature - Complete Springer Journals</source><creator>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</creator><creatorcontrib>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</creatorcontrib><description>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</description><identifier>ISSN: 1559-8608</identifier><identifier>ISSN: 1559-8616</identifier><identifier>EISSN: 1559-8616</identifier><identifier>DOI: 10.1080/15598608.2017.1295889</identifier><language>eng</language><publisher>Cham: Taylor &amp; Francis</publisher><subject>asymptotic relative efficiency ; Hypothesis test ; Mathematics ; prevention trial ; Probability Theory and Stochastic Processes ; sample size calculation ; Statistical Theory and Methods ; Statistics ; survival data analysis ; weighted logrank tests</subject><ispartof>Journal of statistical theory and practice, 2017-07, Vol.11 (3), p.418-435</ispartof><rights>2017 Grace Scientific Publishing, LLC 2017</rights><rights>Grace Scientific Publishing 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</citedby><cites>FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</cites><orcidid>0000-0001-9839-9598 ; 0000-0002-1142-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/15598608.2017.1295889$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/15598608.2017.1295889$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01539213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garès, Valérie</creatorcontrib><creatorcontrib>Andrieu, Sandrine</creatorcontrib><creatorcontrib>Dupuy, Jean-François</creatorcontrib><creatorcontrib>Savy, Nicolas</creatorcontrib><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><title>Journal of statistical theory and practice</title><addtitle>J Stat Theory Pract</addtitle><description>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</description><subject>asymptotic relative efficiency</subject><subject>Hypothesis test</subject><subject>Mathematics</subject><subject>prevention trial</subject><subject>Probability Theory and Stochastic Processes</subject><subject>sample size calculation</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>survival data analysis</subject><subject>weighted logrank tests</subject><issn>1559-8608</issn><issn>1559-8616</issn><issn>1559-8616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAyEUhYnRxFp9BBO2LqbCMD-ws2msNWnSjW7cEErB0jDQAGrq08tkape64dycnHNz-QC4xWiCEUX3uK4ZbRCdlAi3E1yymlJ2Bka9X9AGN-enGdFLcBXjDqEGI0JG4G3lYNoqOLeqM-69WIgQsiafbRUT1D5AK5KCSmslU4TGwX1Qn8olkzNBuI3vzLfaQOldCt7aPKZghI3X4EJnUTdHHYPX-ePLbFEsV0_Ps-mykBWhqSgRqVtBdaUbpXG-VmApsWSYtkiK9bqsiKKMaFmtWVO3RCKhygpVkjCF8kPG4G7YuxWW74PpRDhwLwxfTJe89xCuCSsx-cQ5Ww9ZGXyMQelTASPew-S_MHkPkx9h5l4z9OK-x6MC3_mP4PK3_i0-DEXjMspOfPlgNzyJg_VBZ3rSRE7-XvEDOuqMFw</recordid><startdate>20170703</startdate><enddate>20170703</enddate><creator>Garès, Valérie</creator><creator>Andrieu, Sandrine</creator><creator>Dupuy, Jean-François</creator><creator>Savy, Nicolas</creator><general>Taylor &amp; Francis</general><general>Springer International Publishing</general><general>Grace Scientific Pub</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid><orcidid>https://orcid.org/0000-0002-1142-770X</orcidid></search><sort><creationdate>20170703</creationdate><title>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</title><author>Garès, Valérie ; Andrieu, Sandrine ; Dupuy, Jean-François ; Savy, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-20357a8f4f6ef1616a1cc1c91870cabb243e893fc4b96573c0ae2404c39e0c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>asymptotic relative efficiency</topic><topic>Hypothesis test</topic><topic>Mathematics</topic><topic>prevention trial</topic><topic>Probability Theory and Stochastic Processes</topic><topic>sample size calculation</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>survival data analysis</topic><topic>weighted logrank tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garès, Valérie</creatorcontrib><creatorcontrib>Andrieu, Sandrine</creatorcontrib><creatorcontrib>Dupuy, Jean-François</creatorcontrib><creatorcontrib>Savy, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of statistical theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garès, Valérie</au><au>Andrieu, Sandrine</au><au>Dupuy, Jean-François</au><au>Savy, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Fleming-Harrington test for late effects in prevention randomized controlled trials</atitle><jtitle>Journal of statistical theory and practice</jtitle><stitle>J Stat Theory Pract</stitle><date>2017-07-03</date><risdate>2017</risdate><volume>11</volume><issue>3</issue><spage>418</spage><epage>435</epage><pages>418-435</pages><issn>1559-8608</issn><issn>1559-8616</issn><eissn>1559-8616</eissn><abstract>Weighted logrank tests are the usual tool for detecting late effects in clinical trials. Weights determine the alternative hypotheses against which the tests are optimal. Choosing a specific weight is thus a crucial issue in practice. One common weight was introduced in 1982 by Harrington and Fleming. The corresponding test is implemented in standard statistical softwares packages. However, using this test in randomized controlled clinical trials raises two major and still unsolved difficulties. First, the weight depends on a parameter q that has to be set before collecting the data. Second, the necessary sample size depends on this q. This article addresses these difficulties. We provide the explicit form of the alternative hypothesis under which the Fleming-Harrington test for late effects is optimal in terms of Pitman's asymptotic relative efficiency. Using simulations, we investigate various aspects of the Fleming-Harrington test for late effects, such as power properties and sensitivity to the value of q. We also investigate the relation between q and the necessary sample size for the Fleming-Harrington test. Based on these results, we propose as a general choice for testing late effects. We illustrate our methodology on a data set arising from a prevention trial in the field of dementia.</abstract><cop>Cham</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/15598608.2017.1295889</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9839-9598</orcidid><orcidid>https://orcid.org/0000-0002-1142-770X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-8608
ispartof Journal of statistical theory and practice, 2017-07, Vol.11 (3), p.418-435
issn 1559-8608
1559-8616
1559-8616
language eng
recordid cdi_springer_journals_10_1080_15598608_2017_1295889
source Springer Nature - Complete Springer Journals
subjects asymptotic relative efficiency
Hypothesis test
Mathematics
prevention trial
Probability Theory and Stochastic Processes
sample size calculation
Statistical Theory and Methods
Statistics
survival data analysis
weighted logrank tests
title On the Fleming-Harrington test for late effects in prevention randomized controlled trials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A37%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Fleming-Harrington%20test%20for%20late%20effects%20in%20prevention%20randomized%20controlled%20trials&rft.jtitle=Journal%20of%20statistical%20theory%20and%20practice&rft.au=Gar%C3%A8s,%20Val%C3%A9rie&rft.date=2017-07-03&rft.volume=11&rft.issue=3&rft.spage=418&rft.epage=435&rft.pages=418-435&rft.issn=1559-8608&rft.eissn=1559-8616&rft_id=info:doi/10.1080/15598608.2017.1295889&rft_dat=%3Chal_sprin%3Eoai_HAL_hal_01539213v1%3C/hal_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true