Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"
As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2019-01, Vol.26 (1), p.147-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | Journal of nonlinear mathematical physics |
container_volume | 26 |
creator | Calogero, Francesco Leyvraz, François |
description | As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction"). |
doi_str_mv | 10.1080/14029251.2019.1544795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_14029251_2019_1544795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921035466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSjzujNpPtp5pQx1wsCb3UpI02TLaJOZZIz-ezM6EW_05pwDed438ABwi-AUwQreIwKLWUHRtIBoNkWUkHJGz8AIlSXLYUWL83QnJj9Cl-AqhC2EuGRVNQIfK9Op3NhG7VQaNmYL0Zk2OmuEDVmjgvSmNnadhT5E1YXsYOIm097IaJx9yOJGZRPZy9ZF7-zv18k1uNCiDermtMdg9fK8mi_y5fvr2_xpmUuCi5gzSRkutaw1LCVWtVJU4ILIGUOIkEZXNaqxqLCu08EYK2lDMCsoRYIiRvAY3A21O-8-9ypEvnV7b9OPPIlBEFPCWKLoQEnvQvBK8503nfA9R5AfRfJvkfwokp9EphwbciHxdq38T_t_wcchaKx2vhMH59uGR9G3zmsvrDSB478rvgCX9orj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921035466</pqid></control><display><type>article</type><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Calogero, Francesco ; Leyvraz, François</creator><creatorcontrib>Calogero, Francesco ; Leyvraz, François</creatorcontrib><description>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1080/14029251.2019.1544795</identifier><language>eng</language><publisher>Dordrecht: Taylor & Francis</publisher><subject>Charged particles ; Cyclotrons ; Differential equations ; Electric fields ; Euler-Lagrange equation ; Friction ; Orthogonality ; Research Article</subject><ispartof>Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.147-154</ispartof><rights>2018 The Authors 2018</rights><rights>the authors 2019</rights><rights>the authors 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</citedby><cites>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/14029251.2019.1544795$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/14029251.2019.1544795$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Calogero, Francesco</creatorcontrib><creatorcontrib>Leyvraz, François</creatorcontrib><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</description><subject>Charged particles</subject><subject>Cyclotrons</subject><subject>Differential equations</subject><subject>Electric fields</subject><subject>Euler-Lagrange equation</subject><subject>Friction</subject><subject>Orthogonality</subject><subject>Research Article</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkF1LwzAUhoMoOKc_QSjzujNpPtp5pQx1wsCb3UpI02TLaJOZZIz-ezM6EW_05pwDed438ABwi-AUwQreIwKLWUHRtIBoNkWUkHJGz8AIlSXLYUWL83QnJj9Cl-AqhC2EuGRVNQIfK9Op3NhG7VQaNmYL0Zk2OmuEDVmjgvSmNnadhT5E1YXsYOIm097IaJx9yOJGZRPZy9ZF7-zv18k1uNCiDermtMdg9fK8mi_y5fvr2_xpmUuCi5gzSRkutaw1LCVWtVJU4ILIGUOIkEZXNaqxqLCu08EYK2lDMCsoRYIiRvAY3A21O-8-9ypEvnV7b9OPPIlBEFPCWKLoQEnvQvBK8503nfA9R5AfRfJvkfwokp9EphwbciHxdq38T_t_wcchaKx2vhMH59uGR9G3zmsvrDSB478rvgCX9orj</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Calogero, Francesco</creator><creator>Leyvraz, François</creator><general>Taylor & Francis</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190102</creationdate><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><author>Calogero, Francesco ; Leyvraz, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charged particles</topic><topic>Cyclotrons</topic><topic>Differential equations</topic><topic>Electric fields</topic><topic>Euler-Lagrange equation</topic><topic>Friction</topic><topic>Orthogonality</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calogero, Francesco</creatorcontrib><creatorcontrib>Leyvraz, François</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calogero, Francesco</au><au>Leyvraz, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2019-01-02</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</abstract><cop>Dordrecht</cop><pub>Taylor & Francis</pub><doi>10.1080/14029251.2019.1544795</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1402-9251 |
ispartof | Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.147-154 |
issn | 1402-9251 1776-0852 1776-0852 |
language | eng |
recordid | cdi_springer_journals_10_1080_14029251_2019_1544795 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals |
subjects | Charged particles Cyclotrons Differential equations Electric fields Euler-Lagrange equation Friction Orthogonality Research Article |
title | Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction" |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-independent%20Hamiltonians%20describing%20systems%20with%20friction:%20the%20%22cyclotron%20with%20friction%22&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Calogero,%20Francesco&rft.date=2019-01-02&rft.volume=26&rft.issue=1&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1080/14029251.2019.1544795&rft_dat=%3Cproquest_sprin%3E2921035466%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921035466&rft_id=info:pmid/&rfr_iscdi=true |