Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"

As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2019-01, Vol.26 (1), p.147-154
Hauptverfasser: Calogero, Francesco, Leyvraz, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 147
container_title Journal of nonlinear mathematical physics
container_volume 26
creator Calogero, Francesco
Leyvraz, François
description As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").
doi_str_mv 10.1080/14029251.2019.1544795
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_14029251_2019_1544795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921035466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKc_QSjzujNpPtp5pQx1wsCb3UpI02TLaJOZZIz-ezM6EW_05pwDed438ABwi-AUwQreIwKLWUHRtIBoNkWUkHJGz8AIlSXLYUWL83QnJj9Cl-AqhC2EuGRVNQIfK9Op3NhG7VQaNmYL0Zk2OmuEDVmjgvSmNnadhT5E1YXsYOIm097IaJx9yOJGZRPZy9ZF7-zv18k1uNCiDermtMdg9fK8mi_y5fvr2_xpmUuCi5gzSRkutaw1LCVWtVJU4ILIGUOIkEZXNaqxqLCu08EYK2lDMCsoRYIiRvAY3A21O-8-9ypEvnV7b9OPPIlBEFPCWKLoQEnvQvBK8503nfA9R5AfRfJvkfwokp9EphwbciHxdq38T_t_wcchaKx2vhMH59uGR9G3zmsvrDSB478rvgCX9orj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921035466</pqid></control><display><type>article</type><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Calogero, Francesco ; Leyvraz, François</creator><creatorcontrib>Calogero, Francesco ; Leyvraz, François</creatorcontrib><description>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1080/14029251.2019.1544795</identifier><language>eng</language><publisher>Dordrecht: Taylor &amp; Francis</publisher><subject>Charged particles ; Cyclotrons ; Differential equations ; Electric fields ; Euler-Lagrange equation ; Friction ; Orthogonality ; Research Article</subject><ispartof>Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.147-154</ispartof><rights>2018 The Authors 2018</rights><rights>the authors 2019</rights><rights>the authors 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</citedby><cites>FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/14029251.2019.1544795$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/14029251.2019.1544795$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Calogero, Francesco</creatorcontrib><creatorcontrib>Leyvraz, François</creatorcontrib><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</description><subject>Charged particles</subject><subject>Cyclotrons</subject><subject>Differential equations</subject><subject>Electric fields</subject><subject>Euler-Lagrange equation</subject><subject>Friction</subject><subject>Orthogonality</subject><subject>Research Article</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkF1LwzAUhoMoOKc_QSjzujNpPtp5pQx1wsCb3UpI02TLaJOZZIz-ezM6EW_05pwDed438ABwi-AUwQreIwKLWUHRtIBoNkWUkHJGz8AIlSXLYUWL83QnJj9Cl-AqhC2EuGRVNQIfK9Op3NhG7VQaNmYL0Zk2OmuEDVmjgvSmNnadhT5E1YXsYOIm097IaJx9yOJGZRPZy9ZF7-zv18k1uNCiDermtMdg9fK8mi_y5fvr2_xpmUuCi5gzSRkutaw1LCVWtVJU4ILIGUOIkEZXNaqxqLCu08EYK2lDMCsoRYIiRvAY3A21O-8-9ypEvnV7b9OPPIlBEFPCWKLoQEnvQvBK8503nfA9R5AfRfJvkfwokp9EphwbciHxdq38T_t_wcchaKx2vhMH59uGR9G3zmsvrDSB478rvgCX9orj</recordid><startdate>20190102</startdate><enddate>20190102</enddate><creator>Calogero, Francesco</creator><creator>Leyvraz, François</creator><general>Taylor &amp; Francis</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190102</creationdate><title>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</title><author>Calogero, Francesco ; Leyvraz, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-6c5637fcbf07c3ebee5a324c961144df8b1b3a83fbb1b66675d4362551a51643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charged particles</topic><topic>Cyclotrons</topic><topic>Differential equations</topic><topic>Electric fields</topic><topic>Euler-Lagrange equation</topic><topic>Friction</topic><topic>Orthogonality</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calogero, Francesco</creatorcontrib><creatorcontrib>Leyvraz, François</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calogero, Francesco</au><au>Leyvraz, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2019-01-02</date><risdate>2019</risdate><volume>26</volume><issue>1</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>As is well-known, any ordinary differential equation in one dimension can be cast as the Euler-Lagrange equation of an appropriate Lagrangian. Additionally, if the initial equation is autonomous, the Lagrangian can always be chosen to be time-independent. In two dimensions, however, the situation is more complex, and there exist systems of ODEs which cannot be described by any Lagrangian. In this paper we display Hamiltonians which describe the behaviour of a charged particle moving in a plane under the combined influence of a constant electric field (in the plane) and a constant magnetic field (orthogonal to the plane) as well as a friction force proportional to the velocity ("cyclotron with friction").</abstract><cop>Dordrecht</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14029251.2019.1544795</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2019-01, Vol.26 (1), p.147-154
issn 1402-9251
1776-0852
1776-0852
language eng
recordid cdi_springer_journals_10_1080_14029251_2019_1544795
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects Charged particles
Cyclotrons
Differential equations
Electric fields
Euler-Lagrange equation
Friction
Orthogonality
Research Article
title Time-independent Hamiltonians describing systems with friction: the "cyclotron with friction"
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-independent%20Hamiltonians%20describing%20systems%20with%20friction:%20the%20%22cyclotron%20with%20friction%22&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Calogero,%20Francesco&rft.date=2019-01-02&rft.volume=26&rft.issue=1&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1080/14029251.2019.1544795&rft_dat=%3Cproquest_sprin%3E2921035466%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921035466&rft_id=info:pmid/&rfr_iscdi=true