Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions
This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solut...
Gespeichert in:
Veröffentlicht in: | Journal of nonlinear mathematical physics 2018-01, Vol.25 (3), p.442-461 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 461 |
---|---|
container_issue | 3 |
container_start_page | 442 |
container_title | Journal of nonlinear mathematical physics |
container_volume | 25 |
creator | Valchev, T. I. Yanovski, A. B. |
description | This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases. |
doi_str_mv | 10.1080/14029251.2018.1494747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_14029251_2018_1494747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921032479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhosoeHwEIeB1aw5Nk94py-ouLCgerkOaTJdIN9lNWkSf3pZVvNOrGYbv_we-LLskuCBY4mtSYlpTTgqKiSxIWZeiFAfZCRGiyrHk9HDcRyafoOPsNKU3jJmopDzJmscEgw35AuLG9U579AR2ML0LHoUWaXQPHqLu3CdYtACXwDcQ1-gOYgwbvfbQo_lu0FOgQMtlgZ63YJzu0HPohumazrOjVncJLr7nWfZ6N3-ZLfLVw_1ydrvKTclon9vGMMYICOC4bG0jmsZKENzIcWfM0MpwaqkxRNacW960UtbGVlDhVtcNZ2fZ1b53G8NugNSrtzBEP75Uox6CGS1FPVJ8T5kYUorQqm10Gx0_FMFq0ql-dKpJp_rWOeaqfS6NvF9D_G3_L3izDzrfhrjR7yF2VvX6owuxjdoblxT7u-ILzOiNCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921032479</pqid></control><display><type>article</type><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Valchev, T. I. ; Yanovski, A. B.</creator><creatorcontrib>Valchev, T. I. ; Yanovski, A. B.</creatorcontrib><description>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1080/14029251.2018.1494747</identifier><language>eng</language><publisher>Dordrecht: Taylor & Francis</publisher><subject>dressing method ; Ferromagnetism ; generalized HF equation ; Nonlinear evolution equations ; quasi-rational solutions ; Research Article ; soliton solutions</subject><ispartof>Journal of nonlinear mathematical physics, 2018-01, Vol.25 (3), p.442-461</ispartof><rights>2018 the authors 2018</rights><rights>the authors 2018</rights><rights>the authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</citedby><cites>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/14029251.2018.1494747$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/14029251.2018.1494747$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Valchev, T. I.</creatorcontrib><creatorcontrib>Yanovski, A. B.</creatorcontrib><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</description><subject>dressing method</subject><subject>Ferromagnetism</subject><subject>generalized HF equation</subject><subject>Nonlinear evolution equations</subject><subject>quasi-rational solutions</subject><subject>Research Article</subject><subject>soliton solutions</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkNtKxDAQhosoeHwEIeB1aw5Nk94py-ouLCgerkOaTJdIN9lNWkSf3pZVvNOrGYbv_we-LLskuCBY4mtSYlpTTgqKiSxIWZeiFAfZCRGiyrHk9HDcRyafoOPsNKU3jJmopDzJmscEgw35AuLG9U579AR2ML0LHoUWaXQPHqLu3CdYtACXwDcQ1-gOYgwbvfbQo_lu0FOgQMtlgZ63YJzu0HPohumazrOjVncJLr7nWfZ6N3-ZLfLVw_1ydrvKTclon9vGMMYICOC4bG0jmsZKENzIcWfM0MpwaqkxRNacW960UtbGVlDhVtcNZ2fZ1b53G8NugNSrtzBEP75Uox6CGS1FPVJ8T5kYUorQqm10Gx0_FMFq0ql-dKpJp_rWOeaqfS6NvF9D_G3_L3izDzrfhrjR7yF2VvX6owuxjdoblxT7u-ILzOiNCg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Valchev, T. I.</creator><creator>Yanovski, A. B.</creator><general>Taylor & Francis</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180101</creationdate><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><author>Valchev, T. I. ; Yanovski, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>dressing method</topic><topic>Ferromagnetism</topic><topic>generalized HF equation</topic><topic>Nonlinear evolution equations</topic><topic>quasi-rational solutions</topic><topic>Research Article</topic><topic>soliton solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valchev, T. I.</creatorcontrib><creatorcontrib>Yanovski, A. B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valchev, T. I.</au><au>Yanovski, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>442</spage><epage>461</epage><pages>442-461</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</abstract><cop>Dordrecht</cop><pub>Taylor & Francis</pub><doi>10.1080/14029251.2018.1494747</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1402-9251 |
ispartof | Journal of nonlinear mathematical physics, 2018-01, Vol.25 (3), p.442-461 |
issn | 1402-9251 1776-0852 1776-0852 |
language | eng |
recordid | cdi_springer_journals_10_1080_14029251_2018_1494747 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals |
subjects | dressing method Ferromagnetism generalized HF equation Nonlinear evolution equations quasi-rational solutions Research Article soliton solutions |
title | Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-Hermitian%20Reduction%20of%20a%20Generalized%20Heisenberg%20Ferromagnet%20Equation.%20II.%20Special%20Solutions&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Valchev,%20T.%20I.&rft.date=2018-01-01&rft.volume=25&rft.issue=3&rft.spage=442&rft.epage=461&rft.pages=442-461&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1080/14029251.2018.1494747&rft_dat=%3Cproquest_sprin%3E2921032479%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921032479&rft_id=info:pmid/&rfr_iscdi=true |