Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions

This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nonlinear mathematical physics 2018-01, Vol.25 (3), p.442-461
Hauptverfasser: Valchev, T. I., Yanovski, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue 3
container_start_page 442
container_title Journal of nonlinear mathematical physics
container_volume 25
creator Valchev, T. I.
Yanovski, A. B.
description This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.
doi_str_mv 10.1080/14029251.2018.1494747
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_journals_10_1080_14029251_2018_1494747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921032479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhosoeHwEIeB1aw5Nk94py-ouLCgerkOaTJdIN9lNWkSf3pZVvNOrGYbv_we-LLskuCBY4mtSYlpTTgqKiSxIWZeiFAfZCRGiyrHk9HDcRyafoOPsNKU3jJmopDzJmscEgw35AuLG9U579AR2ML0LHoUWaXQPHqLu3CdYtACXwDcQ1-gOYgwbvfbQo_lu0FOgQMtlgZ63YJzu0HPohumazrOjVncJLr7nWfZ6N3-ZLfLVw_1ydrvKTclon9vGMMYICOC4bG0jmsZKENzIcWfM0MpwaqkxRNacW960UtbGVlDhVtcNZ2fZ1b53G8NugNSrtzBEP75Uox6CGS1FPVJ8T5kYUorQqm10Gx0_FMFq0ql-dKpJp_rWOeaqfS6NvF9D_G3_L3izDzrfhrjR7yF2VvX6owuxjdoblxT7u-ILzOiNCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921032479</pqid></control><display><type>article</type><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>Valchev, T. I. ; Yanovski, A. B.</creator><creatorcontrib>Valchev, T. I. ; Yanovski, A. B.</creatorcontrib><description>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</description><identifier>ISSN: 1402-9251</identifier><identifier>ISSN: 1776-0852</identifier><identifier>EISSN: 1776-0852</identifier><identifier>DOI: 10.1080/14029251.2018.1494747</identifier><language>eng</language><publisher>Dordrecht: Taylor &amp; Francis</publisher><subject>dressing method ; Ferromagnetism ; generalized HF equation ; Nonlinear evolution equations ; quasi-rational solutions ; Research Article ; soliton solutions</subject><ispartof>Journal of nonlinear mathematical physics, 2018-01, Vol.25 (3), p.442-461</ispartof><rights>2018 the authors 2018</rights><rights>the authors 2018</rights><rights>the authors 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</citedby><cites>FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1080/14029251.2018.1494747$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1080/14029251.2018.1494747$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Valchev, T. I.</creatorcontrib><creatorcontrib>Yanovski, A. B.</creatorcontrib><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><title>Journal of nonlinear mathematical physics</title><addtitle>J Nonlinear Math Phys</addtitle><description>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</description><subject>dressing method</subject><subject>Ferromagnetism</subject><subject>generalized HF equation</subject><subject>Nonlinear evolution equations</subject><subject>quasi-rational solutions</subject><subject>Research Article</subject><subject>soliton solutions</subject><issn>1402-9251</issn><issn>1776-0852</issn><issn>1776-0852</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNqFkNtKxDAQhosoeHwEIeB1aw5Nk94py-ouLCgerkOaTJdIN9lNWkSf3pZVvNOrGYbv_we-LLskuCBY4mtSYlpTTgqKiSxIWZeiFAfZCRGiyrHk9HDcRyafoOPsNKU3jJmopDzJmscEgw35AuLG9U579AR2ML0LHoUWaXQPHqLu3CdYtACXwDcQ1-gOYgwbvfbQo_lu0FOgQMtlgZ63YJzu0HPohumazrOjVncJLr7nWfZ6N3-ZLfLVw_1ydrvKTclon9vGMMYICOC4bG0jmsZKENzIcWfM0MpwaqkxRNacW960UtbGVlDhVtcNZ2fZ1b53G8NugNSrtzBEP75Uox6CGS1FPVJ8T5kYUorQqm10Gx0_FMFq0ql-dKpJp_rWOeaqfS6NvF9D_G3_L3izDzrfhrjR7yF2VvX6owuxjdoblxT7u-ILzOiNCg</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Valchev, T. I.</creator><creator>Yanovski, A. B.</creator><general>Taylor &amp; Francis</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20180101</creationdate><title>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</title><author>Valchev, T. I. ; Yanovski, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-dbc3331e7e504fdb7bbd8e75c8db733c26c52d2cc18955d5bf889cd6e60fa9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>dressing method</topic><topic>Ferromagnetism</topic><topic>generalized HF equation</topic><topic>Nonlinear evolution equations</topic><topic>quasi-rational solutions</topic><topic>Research Article</topic><topic>soliton solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valchev, T. I.</creatorcontrib><creatorcontrib>Yanovski, A. B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of nonlinear mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valchev, T. I.</au><au>Yanovski, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions</atitle><jtitle>Journal of nonlinear mathematical physics</jtitle><stitle>J Nonlinear Math Phys</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>3</issue><spage>442</spage><epage>461</epage><pages>442-461</pages><issn>1402-9251</issn><issn>1776-0852</issn><eissn>1776-0852</eissn><abstract>This paper is a continuation of our previous work in which we studied a sl (3, ℂ) Zakharov-Shabat type auxiliary linear problem with reductions of Mikhailov type and the corresponding integrable hierarchy of nonlinear evolution equations. Now, we shall demonstrate how one can construct special solutions over constant back- ground through Zakharov-Shabat's dressing technique. That approach will be illustrated on the example of the generalized Heisenberg ferromagnet equation related to the linear problem for sl (3, ℂ). In doing this, we shall discuss the differences between the Hermitian and pseudo-Hermitian cases.</abstract><cop>Dordrecht</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/14029251.2018.1494747</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1402-9251
ispartof Journal of nonlinear mathematical physics, 2018-01, Vol.25 (3), p.442-461
issn 1402-9251
1776-0852
1776-0852
language eng
recordid cdi_springer_journals_10_1080_14029251_2018_1494747
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects dressing method
Ferromagnetism
generalized HF equation
Nonlinear evolution equations
quasi-rational solutions
Research Article
soliton solutions
title Pseudo-Hermitian Reduction of a Generalized Heisenberg Ferromagnet Equation. II. Special Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-Hermitian%20Reduction%20of%20a%20Generalized%20Heisenberg%20Ferromagnet%20Equation.%20II.%20Special%20Solutions&rft.jtitle=Journal%20of%20nonlinear%20mathematical%20physics&rft.au=Valchev,%20T.%20I.&rft.date=2018-01-01&rft.volume=25&rft.issue=3&rft.spage=442&rft.epage=461&rft.pages=442-461&rft.issn=1402-9251&rft.eissn=1776-0852&rft_id=info:doi/10.1080/14029251.2018.1494747&rft_dat=%3Cproquest_sprin%3E2921032479%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921032479&rft_id=info:pmid/&rfr_iscdi=true