Engineering Bacillus subtilis for the formation of a durable living biocomposite material

Engineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-link...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-12, Vol.12 (1), p.7133-7133, Article 7133
Hauptverfasser: Kang, Sun-Young, Pokhrel, Anaya, Bratsch, Sara, Benson, Joey J., Seo, Seung-Oh, Quin, Maureen B., Aksan, Alptekin, Schmidt-Dannert, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Engineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-linking of cells. B. subtilis is engineered to display SpyTags on polar flagella for cell attachment to SpyCatcher modified secreted scaffolds. We engineer endospore limited B. subtilis cells to become a structural component of the material with spores for long-term storage of genetic programming. Silica biomineralization peptides are screened and scaffolds designed for silica polymerization to fabricate biocomposite materials with enhanced mechanical properties. We show that the resulting ELM can be regenerated from a piece of cell containing silica material and that new functions can be incorporated by co-cultivation of engineered B. subtilis strains. We believe that this work will serve as a framework for the future design of resilient ELMs. Despite the advances in engineered living materials (ELMs), the diversity of ELMs especially those that are capable of autonomous self-fabrication and regeneration, is low. Here, the authors engineer a resilient ELM biocomposite using Bacillus subtilis and secreted EutM proteins as selfassembling scaffold building blocks.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27467-2