Prominent radiative contributions from multiply-excited states in laser-produced tin plasma for nanolithography

Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-05, Vol.11 (1), p.2334-2334, Article 2334
Hauptverfasser: Torretti, F., Sheil, J., Schupp, R., Basko, M. M., Bayraktar, M., Meijer, R. A., Witte, S., Ubachs, W., Hoekstra, R., Versolato, O. O., Neukirch, A. J., Colgan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extreme ultraviolet (EUV) lithography is currently entering high-volume manufacturing to enable the continued miniaturization of semiconductor devices. The required EUV light, at 13.5 nm wavelength, is produced in a hot and dense laser-driven tin plasma. The atomic origins of this light are demonstrably poorly understood. Here we calculate detailed tin opacity spectra using the Los Alamos atomic physics suite ATOMIC and validate these calculations with experimental comparisons. Our key finding is that EUV light largely originates from transitions between multiply-excited states, and not from the singly-excited states decaying to the ground state as is the current paradigm. Moreover, we find that transitions between these multiply-excited states also contribute in the same narrow window around 13.5 nm as those originating from singly-excited states, and this striking property holds over a wide range of charge states. We thus reveal the doubly magic behavior of tin and the origins of the EUV light. Extreme ultraviolet (EUV) light is entering use in nanolithography. Here the authors discuss experimental and theoretical results about the prominent role of multiply-excited states in highly charged tin ions in the mechanism of EUV light emission from laser-produced plasma.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-15678-y