AdS3/CFT2, finite-gap equations and massless modes
A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the c...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2014-04, Vol.2014 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2014 |
creator | Lloyd, Thomas Stefanski, Bogdan |
description | A
bstract
It is known that string theory on
AdS
3
×
M
7
backgrounds, where
M
7
=
S
3
×
S
3
×
S
1
or
S
3
×
T
4
, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these
AdS
3
×
M
7
backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the
AdS
3
×
M
7
finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on
AdS
3
×
M
7
. |
doi_str_mv | 10.1007/JHEP04(2014)179 |
format | Article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_JHEP04_2014_179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_JHEP04_2014_179</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</originalsourceid><addsrcrecordid>eNotz01rAjEUheFQKNRq193OsoWm3ptE413K4EeLYKF2HTKTREY0Y-fq_69iV2f3Hh4hnhHeEcAOP5ezLzAvCtC8oqU70UNQJCfG0oN4ZN4B4AgJekJNw7celvONeitSk5tTlFt_LOLv2Z-aNnPhcygOnnkfmYtDGyIPxH3ye45P_9sXP_PZplzK1XrxUU5XkhGRJGmrjQHSpH2NZBOqKmKlKE3A1oghhXFdV6OIfkwEtdY2qqQgGJXQxEr3Bdy6fOyavI2d27XnLl8uHYK7Ot3N6a5Od3HqP6IcRd8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AdS3/CFT2, finite-gap equations and massless modes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Lloyd, Thomas ; Stefanski, Bogdan</creator><creatorcontrib>Lloyd, Thomas ; Stefanski, Bogdan</creatorcontrib><description>A
bstract
It is known that string theory on
AdS
3
×
M
7
backgrounds, where
M
7
=
S
3
×
S
3
×
S
1
or
S
3
×
T
4
, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these
AdS
3
×
M
7
backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the
AdS
3
×
M
7
finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on
AdS
3
×
M
7
.</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2014)179</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-04, Vol.2014 (4)</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP04(2014)179$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP04(2014)179$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Lloyd, Thomas</creatorcontrib><creatorcontrib>Stefanski, Bogdan</creatorcontrib><title>AdS3/CFT2, finite-gap equations and massless modes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A
bstract
It is known that string theory on
AdS
3
×
M
7
backgrounds, where
M
7
=
S
3
×
S
3
×
S
1
or
S
3
×
T
4
, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these
AdS
3
×
M
7
backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the
AdS
3
×
M
7
finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on
AdS
3
×
M
7
.</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNotz01rAjEUheFQKNRq193OsoWm3ptE413K4EeLYKF2HTKTREY0Y-fq_69iV2f3Hh4hnhHeEcAOP5ezLzAvCtC8oqU70UNQJCfG0oN4ZN4B4AgJekJNw7celvONeitSk5tTlFt_LOLv2Z-aNnPhcygOnnkfmYtDGyIPxH3ye45P_9sXP_PZplzK1XrxUU5XkhGRJGmrjQHSpH2NZBOqKmKlKE3A1oghhXFdV6OIfkwEtdY2qqQgGJXQxEr3Bdy6fOyavI2d27XnLl8uHYK7Ot3N6a5Od3HqP6IcRd8</recordid><startdate>20140429</startdate><enddate>20140429</enddate><creator>Lloyd, Thomas</creator><creator>Stefanski, Bogdan</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope></search><sort><creationdate>20140429</creationdate><title>AdS3/CFT2, finite-gap equations and massless modes</title><author>Lloyd, Thomas ; Stefanski, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Thomas</creatorcontrib><creatorcontrib>Stefanski, Bogdan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Thomas</au><au>Stefanski, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdS3/CFT2, finite-gap equations and massless modes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-04-29</date><risdate>2014</risdate><volume>2014</volume><issue>4</issue><eissn>1029-8479</eissn><abstract>A
bstract
It is known that string theory on
AdS
3
×
M
7
backgrounds, where
M
7
=
S
3
×
S
3
×
S
1
or
S
3
×
T
4
, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these
AdS
3
×
M
7
backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the
AdS
3
×
M
7
finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on
AdS
3
×
M
7
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2014)179</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2014-04, Vol.2014 (4) |
issn | 1029-8479 |
language | eng |
recordid | cdi_springer_journals_10_1007_JHEP04_2014_179 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection |
subjects | Classical and Quantum Gravitation Elementary Particles Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Relativity Theory String Theory |
title | AdS3/CFT2, finite-gap equations and massless modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdS3/CFT2,%20finite-gap%20equations%20and%20massless%20modes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Lloyd,%20Thomas&rft.date=2014-04-29&rft.volume=2014&rft.issue=4&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2014)179&rft_dat=%3Cspringer%3E10_1007_JHEP04_2014_179%3C/springer%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |