AdS3/CFT2, finite-gap equations and massless modes

A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2014-04, Vol.2014 (4)
Hauptverfasser: Lloyd, Thomas, Stefanski, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title The journal of high energy physics
container_volume 2014
creator Lloyd, Thomas
Stefanski, Bogdan
description A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7 .
doi_str_mv 10.1007/JHEP04(2014)179
format Article
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_journals_10_1007_JHEP04_2014_179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_JHEP04_2014_179</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</originalsourceid><addsrcrecordid>eNotz01rAjEUheFQKNRq193OsoWm3ptE413K4EeLYKF2HTKTREY0Y-fq_69iV2f3Hh4hnhHeEcAOP5ezLzAvCtC8oqU70UNQJCfG0oN4ZN4B4AgJekJNw7celvONeitSk5tTlFt_LOLv2Z-aNnPhcygOnnkfmYtDGyIPxH3ye45P_9sXP_PZplzK1XrxUU5XkhGRJGmrjQHSpH2NZBOqKmKlKE3A1oghhXFdV6OIfkwEtdY2qqQgGJXQxEr3Bdy6fOyavI2d27XnLl8uHYK7Ot3N6a5Od3HqP6IcRd8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AdS3/CFT2, finite-gap equations and massless modes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Lloyd, Thomas ; Stefanski, Bogdan</creator><creatorcontrib>Lloyd, Thomas ; Stefanski, Bogdan</creatorcontrib><description>A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7 .</description><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP04(2014)179</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Elementary Particles ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2014-04, Vol.2014 (4)</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP04(2014)179$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/JHEP04(2014)179$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Lloyd, Thomas</creatorcontrib><creatorcontrib>Stefanski, Bogdan</creatorcontrib><title>AdS3/CFT2, finite-gap equations and massless modes</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7 .</description><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNotz01rAjEUheFQKNRq193OsoWm3ptE413K4EeLYKF2HTKTREY0Y-fq_69iV2f3Hh4hnhHeEcAOP5ezLzAvCtC8oqU70UNQJCfG0oN4ZN4B4AgJekJNw7celvONeitSk5tTlFt_LOLv2Z-aNnPhcygOnnkfmYtDGyIPxH3ye45P_9sXP_PZplzK1XrxUU5XkhGRJGmrjQHSpH2NZBOqKmKlKE3A1oghhXFdV6OIfkwEtdY2qqQgGJXQxEr3Bdy6fOyavI2d27XnLl8uHYK7Ot3N6a5Od3HqP6IcRd8</recordid><startdate>20140429</startdate><enddate>20140429</enddate><creator>Lloyd, Thomas</creator><creator>Stefanski, Bogdan</creator><general>Springer Berlin Heidelberg</general><scope>C6C</scope></search><sort><creationdate>20140429</creationdate><title>AdS3/CFT2, finite-gap equations and massless modes</title><author>Lloyd, Thomas ; Stefanski, Bogdan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1119-93734409393ac197f12be1b29f807c11dfd6ccb5e1a6990c337e2f20d42f14eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Thomas</creatorcontrib><creatorcontrib>Stefanski, Bogdan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Thomas</au><au>Stefanski, Bogdan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdS3/CFT2, finite-gap equations and massless modes</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2014-04-29</date><risdate>2014</risdate><volume>2014</volume><issue>4</issue><eissn>1029-8479</eissn><abstract>A bstract It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4 , is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP04(2014)179</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1029-8479
ispartof The journal of high energy physics, 2014-04, Vol.2014 (4)
issn 1029-8479
language eng
recordid cdi_springer_journals_10_1007_JHEP04_2014_179
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Elementary Particles
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Relativity Theory
String Theory
title AdS3/CFT2, finite-gap equations and massless modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdS3/CFT2,%20finite-gap%20equations%20and%20massless%20modes&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Lloyd,%20Thomas&rft.date=2014-04-29&rft.volume=2014&rft.issue=4&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP04(2014)179&rft_dat=%3Cspringer%3E10_1007_JHEP04_2014_179%3C/springer%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true