DeBruijn Counting for Visualization Algorithms
We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “colo...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | |
container_start_page | 69 |
container_title | |
container_volume | |
creator | Banks, David C. Stockmeyer, Paul K. |
description | We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors. |
doi_str_mv | 10.1007/b106657_4 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_b106657_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC450870_6_77</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-5c26b61cc800281a57fd301fc05e52a146c3a7ffe6259d2903e5551070f751bd3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhI14iFJ64B_kxill187a8bGUp1SJCyBuluM6bUpIgp1c-PWkKmIuo5E-jXaHsSuEOQKomwJBSlImO2IzrXJBGWRac5kfs4t94ARKfpywCUrkqVC5PGMTEpkmRCnP2SzGHYxCrSFXEza_87dhqHZNsmyHpq-aTVK2IXmv4mDr6sf2Vdski3rThqrffsVLdlraOvrZn0_Z28P96_IpXb08Pi8Xq7TjPO9TclwWEp3LAXiOllS5FoClA_LELWbSCavK0ktOes01CE9ECApKRVisxZRdH3pjF8abfDBF235Gg2D2M5j_GUYSDmQX2u_Bx974Pep80wdbu63teh-iyWh8F4w0SolfBzpacg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC450870_6_77</pqid></control><display><type>book_chapter</type><title>DeBruijn Counting for Visualization Algorithms</title><source>Springer Books</source><creator>Banks, David C. ; Stockmeyer, Paul K.</creator><contributor>Hamann, Bernd ; Möller, Torsten ; Russell, Robert D</contributor><creatorcontrib>Banks, David C. ; Stockmeyer, Paul K. ; Hamann, Bernd ; Möller, Torsten ; Russell, Robert D</creatorcontrib><description>We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors.</description><identifier>ISSN: 1612-3786</identifier><identifier>ISBN: 354025076X</identifier><identifier>ISBN: 9783540250760</identifier><identifier>EISBN: 9783540499268</identifier><identifier>EISBN: 3540499261</identifier><identifier>DOI: 10.1007/b106657_4</identifier><identifier>OCLC: 534951166</identifier><identifier>LCCallNum: QA76.76.A65</identifier><language>eng</language><publisher>Germany: Springer Berlin / Heidelberg</publisher><subject>Black Vertex ; Color Group ; Computer science ; Computing: general ; Infinite series ; Permutation Group ; Power Group ; White Vertex</subject><ispartof>Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, 2009, p.69-88</ispartof><rights>Springer-Verlag Berlin Heidelberg 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Mathematics and Visualization</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/450870-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b106657_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b106657_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Hamann, Bernd</contributor><contributor>Möller, Torsten</contributor><contributor>Russell, Robert D</contributor><creatorcontrib>Banks, David C.</creatorcontrib><creatorcontrib>Stockmeyer, Paul K.</creatorcontrib><title>DeBruijn Counting for Visualization Algorithms</title><title>Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration</title><description>We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors.</description><subject>Black Vertex</subject><subject>Color Group</subject><subject>Computer science</subject><subject>Computing: general</subject><subject>Infinite series</subject><subject>Permutation Group</subject><subject>Power Group</subject><subject>White Vertex</subject><issn>1612-3786</issn><isbn>354025076X</isbn><isbn>9783540250760</isbn><isbn>9783540499268</isbn><isbn>3540499261</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9kEtPwzAQhI14iFJ64B_kxill187a8bGUp1SJCyBuluM6bUpIgp1c-PWkKmIuo5E-jXaHsSuEOQKomwJBSlImO2IzrXJBGWRac5kfs4t94ARKfpywCUrkqVC5PGMTEpkmRCnP2SzGHYxCrSFXEza_87dhqHZNsmyHpq-aTVK2IXmv4mDr6sf2Vdski3rThqrffsVLdlraOvrZn0_Z28P96_IpXb08Pi8Xq7TjPO9TclwWEp3LAXiOllS5FoClA_LELWbSCavK0ktOes01CE9ECApKRVisxZRdH3pjF8abfDBF235Gg2D2M5j_GUYSDmQX2u_Bx974Pep80wdbu63teh-iyWh8F4w0SolfBzpacg</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Banks, David C.</creator><creator>Stockmeyer, Paul K.</creator><general>Springer Berlin / Heidelberg</general><general>Springer Berlin Heidelberg</general><scope>FFUUA</scope></search><sort><creationdate>2009</creationdate><title>DeBruijn Counting for Visualization Algorithms</title><author>Banks, David C. ; Stockmeyer, Paul K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-5c26b61cc800281a57fd301fc05e52a146c3a7ffe6259d2903e5551070f751bd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Black Vertex</topic><topic>Color Group</topic><topic>Computer science</topic><topic>Computing: general</topic><topic>Infinite series</topic><topic>Permutation Group</topic><topic>Power Group</topic><topic>White Vertex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banks, David C.</creatorcontrib><creatorcontrib>Stockmeyer, Paul K.</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banks, David C.</au><au>Stockmeyer, Paul K.</au><au>Hamann, Bernd</au><au>Möller, Torsten</au><au>Russell, Robert D</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>DeBruijn Counting for Visualization Algorithms</atitle><btitle>Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration</btitle><seriestitle>Mathematics and Visualization</seriestitle><date>2009</date><risdate>2009</risdate><spage>69</spage><epage>88</epage><pages>69-88</pages><issn>1612-3786</issn><isbn>354025076X</isbn><isbn>9783540250760</isbn><eisbn>9783540499268</eisbn><eisbn>3540499261</eisbn><abstract>We describe how to determine the number of cases that arise in visualization al- gorithms such as Marching Cubes by applying the deBruijn extension of Pólya counting. This technique constructs a polynomial, using the cycle index, encoding the case counts that arise when a discrete function (or “color”) is evaluated at each vertex of a polytope. The technique can serve as a valuable aid in debugging visualization algorithms that extend Marching Cubes, Separating Surfaces, Interval Volumes, Sweeping Simplices, etc., to larger dimensions and to more colors.</abstract><cop>Germany</cop><pub>Springer Berlin / Heidelberg</pub><doi>10.1007/b106657_4</doi><oclcid>534951166</oclcid><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1612-3786 |
ispartof | Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, 2009, p.69-88 |
issn | 1612-3786 |
language | eng |
recordid | cdi_springer_books_10_1007_b106657_4 |
source | Springer Books |
subjects | Black Vertex Color Group Computer science Computing: general Infinite series Permutation Group Power Group White Vertex |
title | DeBruijn Counting for Visualization Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=DeBruijn%20Counting%20for%20Visualization%20Algorithms&rft.btitle=Mathematical%20Foundations%20of%20Scientific%20Visualization,%20Computer%20Graphics,%20and%20Massive%20Data%20Exploration&rft.au=Banks,%20David%20C.&rft.date=2009&rft.spage=69&rft.epage=88&rft.pages=69-88&rft.issn=1612-3786&rft.isbn=354025076X&rft.isbn_list=9783540250760&rft_id=info:doi/10.1007/b106657_4&rft_dat=%3Cproquest_sprin%3EEBC450870_6_77%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540499268&rft.eisbn_list=3540499261&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC450870_6_77&rft_id=info:pmid/&rfr_iscdi=true |