Multiples of lattice polytopes
As counterexamples in Section 2.D show, even a normal lattice polytope need not be covered by its unimodular subsimplices. On the other hand, results like Corollary 2.57 show that certain properties improve if one replaces P by a multiple cP. This can be seen as an expression of the fact that the di...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 91 |
container_title | |
container_volume | |
creator | Bruns, Winfried Gubeladze, Joseph |
description | As counterexamples in Section 2.D show, even a normal lattice polytope need not be covered by its unimodular subsimplices. On the other hand, results like Corollary 2.57 show that certain properties improve if one replaces P by a multiple cP. This can be seen as an expression of the fact that the discrete structure of cP approximates the continuous structure of P better and better when c → ∞. |
doi_str_mv | 10.1007/b105283_3 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_springer_books_10_1007_b105283_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC450646_4_99</sourcerecordid><originalsourceid>FETCH-LOGICAL-p158t-9deab2fb1469c22be7bb911fba71bd6ae70211000dc4e46fce4df7f43c8fb3d33</originalsourceid><addsrcrecordid>eNpFjztPAzEQhI14iBBS8AdQOqoD27tnn0sUhYcURAO1ZfvWEDjlzNkp-PdcFATTjEb6NLvD2IXg14JzfeMFr2UDFg7YGYdGawW1kof_ocYjNhEIptLQyBM2QZCaSyPxlM1y_uCjpERQOGGXT9uurFNHed7HeedKWQeap777Ln2ifM6Oo-syzX59yl7vli-Lh2r1fP-4uF1VSdRNqUxLzsvoBSoTpPSkvTdCRO-08K1yNJ4X4_O8DUioYiBso44IoYkeWoApu9r35jSsN280WN_3n9kKbneb7d_mkeR7Mg3915ZysbRDA23K4Lrw7lKhIVusuUJl0RoDP3JTVXs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC450646_4_99</pqid></control><display><type>book_chapter</type><title>Multiples of lattice polytopes</title><source>Springer Books</source><creator>Bruns, Winfried ; Gubeladze, Joseph</creator><creatorcontrib>Bruns, Winfried ; Gubeladze, Joseph</creatorcontrib><description>As counterexamples in Section 2.D show, even a normal lattice polytope need not be covered by its unimodular subsimplices. On the other hand, results like Corollary 2.57 show that certain properties improve if one replaces P by a multiple cP. This can be seen as an expression of the fact that the discrete structure of cP approximates the continuous structure of P better and better when c → ∞.</description><identifier>ISSN: 1439-7382</identifier><identifier>ISBN: 0387763554</identifier><identifier>ISBN: 9780387763552</identifier><identifier>EISBN: 0387763562</identifier><identifier>EISBN: 9780387763569</identifier><identifier>DOI: 10.1007/b105283_3</identifier><identifier>OCLC: 432702924</identifier><identifier>LCCallNum: QA150-272</identifier><language>eng</language><publisher>United States: Springer</publisher><subject>Algebra ; Algebraic geometry ; Algebraic topology ; Lattice Polytopes ; Simplicial Complex ; Simplicial Cone ; Unimodular Lattice ; Weyl Chamber</subject><ispartof>Polytopes, Rings, and K-Theory, 2009, p.91-119</ispartof><rights>Springer-Verlag New York 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Springer Monographs in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/450646-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/b105283_3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/b105283_3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><creatorcontrib>Bruns, Winfried</creatorcontrib><creatorcontrib>Gubeladze, Joseph</creatorcontrib><title>Multiples of lattice polytopes</title><title>Polytopes, Rings, and K-Theory</title><description>As counterexamples in Section 2.D show, even a normal lattice polytope need not be covered by its unimodular subsimplices. On the other hand, results like Corollary 2.57 show that certain properties improve if one replaces P by a multiple cP. This can be seen as an expression of the fact that the discrete structure of cP approximates the continuous structure of P better and better when c → ∞.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Algebraic topology</subject><subject>Lattice Polytopes</subject><subject>Simplicial Complex</subject><subject>Simplicial Cone</subject><subject>Unimodular Lattice</subject><subject>Weyl Chamber</subject><issn>1439-7382</issn><isbn>0387763554</isbn><isbn>9780387763552</isbn><isbn>0387763562</isbn><isbn>9780387763569</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><recordid>eNpFjztPAzEQhI14iBBS8AdQOqoD27tnn0sUhYcURAO1ZfvWEDjlzNkp-PdcFATTjEb6NLvD2IXg14JzfeMFr2UDFg7YGYdGawW1kof_ocYjNhEIptLQyBM2QZCaSyPxlM1y_uCjpERQOGGXT9uurFNHed7HeedKWQeap777Ln2ifM6Oo-syzX59yl7vli-Lh2r1fP-4uF1VSdRNqUxLzsvoBSoTpPSkvTdCRO-08K1yNJ4X4_O8DUioYiBso44IoYkeWoApu9r35jSsN280WN_3n9kKbneb7d_mkeR7Mg3915ZysbRDA23K4Lrw7lKhIVusuUJl0RoDP3JTVXs</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Bruns, Winfried</creator><creator>Gubeladze, Joseph</creator><general>Springer</general><general>Springer New York</general><scope>FFUUA</scope></search><sort><creationdate>2009</creationdate><title>Multiples of lattice polytopes</title><author>Bruns, Winfried ; Gubeladze, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p158t-9deab2fb1469c22be7bb911fba71bd6ae70211000dc4e46fce4df7f43c8fb3d33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Algebraic topology</topic><topic>Lattice Polytopes</topic><topic>Simplicial Complex</topic><topic>Simplicial Cone</topic><topic>Unimodular Lattice</topic><topic>Weyl Chamber</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruns, Winfried</creatorcontrib><creatorcontrib>Gubeladze, Joseph</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruns, Winfried</au><au>Gubeladze, Joseph</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Multiples of lattice polytopes</atitle><btitle>Polytopes, Rings, and K-Theory</btitle><seriestitle>Springer Monographs in Mathematics</seriestitle><date>2009</date><risdate>2009</risdate><spage>91</spage><epage>119</epage><pages>91-119</pages><issn>1439-7382</issn><isbn>0387763554</isbn><isbn>9780387763552</isbn><eisbn>0387763562</eisbn><eisbn>9780387763569</eisbn><abstract>As counterexamples in Section 2.D show, even a normal lattice polytope need not be covered by its unimodular subsimplices. On the other hand, results like Corollary 2.57 show that certain properties improve if one replaces P by a multiple cP. This can be seen as an expression of the fact that the discrete structure of cP approximates the continuous structure of P better and better when c → ∞.</abstract><cop>United States</cop><pub>Springer</pub><doi>10.1007/b105283_3</doi><oclcid>432702924</oclcid><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-7382 |
ispartof | Polytopes, Rings, and K-Theory, 2009, p.91-119 |
issn | 1439-7382 |
language | eng |
recordid | cdi_springer_books_10_1007_b105283_3 |
source | Springer Books |
subjects | Algebra Algebraic geometry Algebraic topology Lattice Polytopes Simplicial Complex Simplicial Cone Unimodular Lattice Weyl Chamber |
title | Multiples of lattice polytopes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Multiples%20of%20lattice%20polytopes&rft.btitle=Polytopes,%20Rings,%20and%20K-Theory&rft.au=Bruns,%20Winfried&rft.date=2009&rft.spage=91&rft.epage=119&rft.pages=91-119&rft.issn=1439-7382&rft.isbn=0387763554&rft.isbn_list=9780387763552&rft_id=info:doi/10.1007/b105283_3&rft_dat=%3Cproquest_sprin%3EEBC450646_4_99%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=0387763562&rft.eisbn_list=9780387763569&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC450646_4_99&rft_id=info:pmid/&rfr_iscdi=true |