Square-root information filtering and smoothing for precision orbit determination
Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | |
container_start_page | 61 |
container_title | |
container_volume | |
creator | Bierman, Gerald J. |
description | Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms. |
doi_str_mv | 10.1007/BFb0120973 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0120973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0120973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2fRCm98AQ5cgnsepPYPkJFAakSQvTALXJiGwxNXOzw_iSA1L2sRvPtajSMXSBcIYC4vl01gByUoAN2RlXBAWQh5SGb8VHlkgMe7Q3xesxmQEA5Ka5O2SKlDxinKhGkmrHnl69vHW0eQxgy37sQOz340GfObwcbff-W6d5kqRv990mNRLaLtvVpokJs_JAZO6Kd738vz9mJ09tkF_97zjaru83yIV8_3T8ub9Z5KwrKrWgFt8agoqpFIo0oSye5LLHhsi3QkRMlmUq3hVNSK95gVTVGCQ1GO0Nzdvn3Nu2mlDbWTQifqUaop5rqfU30A53qVwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Square-root information filtering and smoothing for precision orbit determination</title><source>Springer Books</source><creator>Bierman, Gerald J.</creator><contributor>Wets, Roger J. -B. ; Sorensen, Danny C.</contributor><creatorcontrib>Bierman, Gerald J. ; Wets, Roger J. -B. ; Sorensen, Danny C.</creatorcontrib><description>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</description><identifier>ISSN: 0303-3929</identifier><identifier>ISBN: 364200847X</identifier><identifier>ISBN: 9783642008474</identifier><identifier>EISSN: 2364-8201</identifier><identifier>EISBN: 3642008488</identifier><identifier>EISBN: 9783642008481</identifier><identifier>DOI: 10.1007/BFb0120973</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Estimation ; Filtering ; Matrix Factorization ; Orbit Determination ; Sensitivity ; Smoothing</subject><ispartof>Algorithms and Theory in Filtering and Control, 2009, p.61-75</ispartof><rights>The Mathematical Programming Society, Inc. 1982</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</citedby><relation>Mathematical Programming Studies</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0120973$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0120973$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Wets, Roger J. -B.</contributor><contributor>Sorensen, Danny C.</contributor><creatorcontrib>Bierman, Gerald J.</creatorcontrib><title>Square-root information filtering and smoothing for precision orbit determination</title><title>Algorithms and Theory in Filtering and Control</title><description>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</description><subject>Estimation</subject><subject>Filtering</subject><subject>Matrix Factorization</subject><subject>Orbit Determination</subject><subject>Sensitivity</subject><subject>Smoothing</subject><issn>0303-3929</issn><issn>2364-8201</issn><isbn>364200847X</isbn><isbn>9783642008474</isbn><isbn>3642008488</isbn><isbn>9783642008481</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkM1OwzAQhM2fRCm98AQ5cgnsepPYPkJFAakSQvTALXJiGwxNXOzw_iSA1L2sRvPtajSMXSBcIYC4vl01gByUoAN2RlXBAWQh5SGb8VHlkgMe7Q3xesxmQEA5Ka5O2SKlDxinKhGkmrHnl69vHW0eQxgy37sQOz340GfObwcbff-W6d5kqRv990mNRLaLtvVpokJs_JAZO6Kd738vz9mJ09tkF_97zjaru83yIV8_3T8ub9Z5KwrKrWgFt8agoqpFIo0oSye5LLHhsi3QkRMlmUq3hVNSK95gVTVGCQ1GO0Nzdvn3Nu2mlDbWTQifqUaop5rqfU30A53qVwY</recordid><startdate>20090225</startdate><enddate>20090225</enddate><creator>Bierman, Gerald J.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20090225</creationdate><title>Square-root information filtering and smoothing for precision orbit determination</title><author>Bierman, Gerald J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Estimation</topic><topic>Filtering</topic><topic>Matrix Factorization</topic><topic>Orbit Determination</topic><topic>Sensitivity</topic><topic>Smoothing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bierman, Gerald J.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierman, Gerald J.</au><au>Wets, Roger J. -B.</au><au>Sorensen, Danny C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Square-root information filtering and smoothing for precision orbit determination</atitle><btitle>Algorithms and Theory in Filtering and Control</btitle><seriestitle>Mathematical Programming Studies</seriestitle><date>2009-02-25</date><risdate>2009</risdate><spage>61</spage><epage>75</epage><pages>61-75</pages><issn>0303-3929</issn><eissn>2364-8201</eissn><isbn>364200847X</isbn><isbn>9783642008474</isbn><eisbn>3642008488</eisbn><eisbn>9783642008481</eisbn><abstract>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0120973</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-3929 |
ispartof | Algorithms and Theory in Filtering and Control, 2009, p.61-75 |
issn | 0303-3929 2364-8201 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0120973 |
source | Springer Books |
subjects | Estimation Filtering Matrix Factorization Orbit Determination Sensitivity Smoothing |
title | Square-root information filtering and smoothing for precision orbit determination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Square-root%20information%20filtering%20and%20smoothing%20for%20precision%20orbit%20determination&rft.btitle=Algorithms%20and%20Theory%20in%20Filtering%20and%20Control&rft.au=Bierman,%20Gerald%20J.&rft.date=2009-02-25&rft.spage=61&rft.epage=75&rft.pages=61-75&rft.issn=0303-3929&rft.eissn=2364-8201&rft.isbn=364200847X&rft.isbn_list=9783642008474&rft_id=info:doi/10.1007/BFb0120973&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0120973%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3642008488&rft.eisbn_list=9783642008481&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |