Square-root information filtering and smoothing for precision orbit determination

Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bierman, Gerald J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 75
container_issue
container_start_page 61
container_title
container_volume
creator Bierman, Gerald J.
description Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.
doi_str_mv 10.1007/BFb0120973
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0120973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0120973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2fRCm98AQ5cgnsepPYPkJFAakSQvTALXJiGwxNXOzw_iSA1L2sRvPtajSMXSBcIYC4vl01gByUoAN2RlXBAWQh5SGb8VHlkgMe7Q3xesxmQEA5Ka5O2SKlDxinKhGkmrHnl69vHW0eQxgy37sQOz340GfObwcbff-W6d5kqRv990mNRLaLtvVpokJs_JAZO6Kd738vz9mJ09tkF_97zjaru83yIV8_3T8ub9Z5KwrKrWgFt8agoqpFIo0oSye5LLHhsi3QkRMlmUq3hVNSK95gVTVGCQ1GO0Nzdvn3Nu2mlDbWTQifqUaop5rqfU30A53qVwY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Square-root information filtering and smoothing for precision orbit determination</title><source>Springer Books</source><creator>Bierman, Gerald J.</creator><contributor>Wets, Roger J. -B. ; Sorensen, Danny C.</contributor><creatorcontrib>Bierman, Gerald J. ; Wets, Roger J. -B. ; Sorensen, Danny C.</creatorcontrib><description>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</description><identifier>ISSN: 0303-3929</identifier><identifier>ISBN: 364200847X</identifier><identifier>ISBN: 9783642008474</identifier><identifier>EISSN: 2364-8201</identifier><identifier>EISBN: 3642008488</identifier><identifier>EISBN: 9783642008481</identifier><identifier>DOI: 10.1007/BFb0120973</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Estimation ; Filtering ; Matrix Factorization ; Orbit Determination ; Sensitivity ; Smoothing</subject><ispartof>Algorithms and Theory in Filtering and Control, 2009, p.61-75</ispartof><rights>The Mathematical Programming Society, Inc. 1982</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</citedby><relation>Mathematical Programming Studies</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0120973$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0120973$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Wets, Roger J. -B.</contributor><contributor>Sorensen, Danny C.</contributor><creatorcontrib>Bierman, Gerald J.</creatorcontrib><title>Square-root information filtering and smoothing for precision orbit determination</title><title>Algorithms and Theory in Filtering and Control</title><description>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</description><subject>Estimation</subject><subject>Filtering</subject><subject>Matrix Factorization</subject><subject>Orbit Determination</subject><subject>Sensitivity</subject><subject>Smoothing</subject><issn>0303-3929</issn><issn>2364-8201</issn><isbn>364200847X</isbn><isbn>9783642008474</isbn><isbn>3642008488</isbn><isbn>9783642008481</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkM1OwzAQhM2fRCm98AQ5cgnsepPYPkJFAakSQvTALXJiGwxNXOzw_iSA1L2sRvPtajSMXSBcIYC4vl01gByUoAN2RlXBAWQh5SGb8VHlkgMe7Q3xesxmQEA5Ka5O2SKlDxinKhGkmrHnl69vHW0eQxgy37sQOz340GfObwcbff-W6d5kqRv990mNRLaLtvVpokJs_JAZO6Kd738vz9mJ09tkF_97zjaru83yIV8_3T8ub9Z5KwrKrWgFt8agoqpFIo0oSye5LLHhsi3QkRMlmUq3hVNSK95gVTVGCQ1GO0Nzdvn3Nu2mlDbWTQifqUaop5rqfU30A53qVwY</recordid><startdate>20090225</startdate><enddate>20090225</enddate><creator>Bierman, Gerald J.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20090225</creationdate><title>Square-root information filtering and smoothing for precision orbit determination</title><author>Bierman, Gerald J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-e7c72edd1936c133a1185f82851b28c41f3f753d6ac4f98a92b166bd97a0dafd3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Estimation</topic><topic>Filtering</topic><topic>Matrix Factorization</topic><topic>Orbit Determination</topic><topic>Sensitivity</topic><topic>Smoothing</topic><toplevel>online_resources</toplevel><creatorcontrib>Bierman, Gerald J.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bierman, Gerald J.</au><au>Wets, Roger J. -B.</au><au>Sorensen, Danny C.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Square-root information filtering and smoothing for precision orbit determination</atitle><btitle>Algorithms and Theory in Filtering and Control</btitle><seriestitle>Mathematical Programming Studies</seriestitle><date>2009-02-25</date><risdate>2009</risdate><spage>61</spage><epage>75</epage><pages>61-75</pages><issn>0303-3929</issn><eissn>2364-8201</eissn><isbn>364200847X</isbn><isbn>9783642008474</isbn><eisbn>3642008488</eisbn><eisbn>9783642008481</eisbn><abstract>Square root information filtering and smoothing has, over the last few years, come to be recognized as a reliable and effective method for computing numerically accurate estimates in problems where high precision is required. Unfortunately, the algorithms employed often project an image of being too costly in terms of both computation and storage requirements. We show that in the case of orbit determination (and in problems of a similar nature), introducing ‘pseudo-epoch’ coordinates and exploiting problem structure dramatically reduces computation and storage requirements. This paper, in the main an expository SRIF review directed at the orbit determination problem, also contains a new smoothed estimate U-D covariance factorization algorithm. This new algorithm is numerically well conditioned and is a significant computational improvement on previous SRIF based smoothing algorithms.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0120973</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-3929
ispartof Algorithms and Theory in Filtering and Control, 2009, p.61-75
issn 0303-3929
2364-8201
language eng
recordid cdi_springer_books_10_1007_BFb0120973
source Springer Books
subjects Estimation
Filtering
Matrix Factorization
Orbit Determination
Sensitivity
Smoothing
title Square-root information filtering and smoothing for precision orbit determination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Square-root%20information%20filtering%20and%20smoothing%20for%20precision%20orbit%20determination&rft.btitle=Algorithms%20and%20Theory%20in%20Filtering%20and%20Control&rft.au=Bierman,%20Gerald%20J.&rft.date=2009-02-25&rft.spage=61&rft.epage=75&rft.pages=61-75&rft.issn=0303-3929&rft.eissn=2364-8201&rft.isbn=364200847X&rft.isbn_list=9783642008474&rft_id=info:doi/10.1007/BFb0120973&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0120973%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3642008488&rft.eisbn_list=9783642008481&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true