Mathematical programming and the optimization of computer simulations
Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables xi, i=1,…, n and yields responses ηj, j=1,…, m. A simulation trial at a particular set of values xik, i=1,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | |
container_start_page | 189 |
container_title | |
container_volume | |
creator | Biles, William E. Swain, James J. |
description | Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables xi, i=1,…, n and yields responses ηj, j=1,…, m. A simulation trial at a particular set of values xik, i=1,…n produces an estimate yik for the system response ηj. This paper describes several formulations of the so-called “simulation/optimization” problem, including constrained optimization and multiple-objective optimization. It also describes several procedures for obtaining a solution to this problem, including a direct search technique, a first-order response surface method, and a second-order response surface approach. Each of these techniques combines simulation, response surface methodology, and mathematical programming. |
doi_str_mv | 10.1007/BFb0120864 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0120864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0120864</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1014-a18dff81e7bd51d96e65bce5304016945cae6bdc522d652627cd87addb40c9b33</originalsourceid><addsrcrecordid>eNpFkDtPw0AQhI-XRAhu-AVX0hj23nclRAkgBdFAbd3LwWD7LJ_T8OsxBIlpVjPfarUahK4I3BAAdXu_cUAoaMmP0AWTnAJoAHaMFnR2paZATlBhlD4wZYw8RQtgwEpmqDlHRc4fMEsKAtos0PrZTu-xs1PjbYuHMe1G23VNv8O2D3hGOA1T0zVf80bqcaqxT92wn-KIc9Pt2984X6Kz2rY5Fn9zid4269fVY7l9eXha3W3LTIDw0hId6lqTqFwQJBgZpXA-CgYciDRceBulC15QGqSgkioftLIhOA7eOMaW6PpwNw_j_GMcK5fSZ64IVD_1VP_1sG_nQlNu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Mathematical programming and the optimization of computer simulations</title><source>Springer Books</source><creator>Biles, William E. ; Swain, James J.</creator><contributor>Dembo, R. S. ; Avriel, M.</contributor><creatorcontrib>Biles, William E. ; Swain, James J. ; Dembo, R. S. ; Avriel, M.</creatorcontrib><description>Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables xi, i=1,…, n and yields responses ηj, j=1,…, m. A simulation trial at a particular set of values xik, i=1,…n produces an estimate yik for the system response ηj. This paper describes several formulations of the so-called “simulation/optimization” problem, including constrained optimization and multiple-objective optimization. It also describes several procedures for obtaining a solution to this problem, including a direct search technique, a first-order response surface method, and a second-order response surface approach. Each of these techniques combines simulation, response surface methodology, and mathematical programming.</description><identifier>ISSN: 0303-3929</identifier><identifier>ISBN: 9783642007996</identifier><identifier>ISBN: 3642007996</identifier><identifier>EISSN: 2364-8201</identifier><identifier>EISBN: 3642008003</identifier><identifier>EISBN: 9783642008009</identifier><identifier>DOI: 10.1007/BFb0120864</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical Programming ; Optimization ; Response Surface Methodology ; Search Methods ; Simulation</subject><ispartof>Engineering Optimization, 2009, p.189-207</ispartof><rights>The mathematical programming society 1979</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Mathematical Programming Studies</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0120864$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0120864$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>780,781,785,794,27930,38260,41447,42516</link.rule.ids></links><search><contributor>Dembo, R. S.</contributor><contributor>Avriel, M.</contributor><creatorcontrib>Biles, William E.</creatorcontrib><creatorcontrib>Swain, James J.</creatorcontrib><title>Mathematical programming and the optimization of computer simulations</title><title>Engineering Optimization</title><description>Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables xi, i=1,…, n and yields responses ηj, j=1,…, m. A simulation trial at a particular set of values xik, i=1,…n produces an estimate yik for the system response ηj. This paper describes several formulations of the so-called “simulation/optimization” problem, including constrained optimization and multiple-objective optimization. It also describes several procedures for obtaining a solution to this problem, including a direct search technique, a first-order response surface method, and a second-order response surface approach. Each of these techniques combines simulation, response surface methodology, and mathematical programming.</description><subject>Mathematical Programming</subject><subject>Optimization</subject><subject>Response Surface Methodology</subject><subject>Search Methods</subject><subject>Simulation</subject><issn>0303-3929</issn><issn>2364-8201</issn><isbn>9783642007996</isbn><isbn>3642007996</isbn><isbn>3642008003</isbn><isbn>9783642008009</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2009</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkDtPw0AQhI-XRAhu-AVX0hj23nclRAkgBdFAbd3LwWD7LJ_T8OsxBIlpVjPfarUahK4I3BAAdXu_cUAoaMmP0AWTnAJoAHaMFnR2paZATlBhlD4wZYw8RQtgwEpmqDlHRc4fMEsKAtos0PrZTu-xs1PjbYuHMe1G23VNv8O2D3hGOA1T0zVf80bqcaqxT92wn-KIc9Pt2984X6Kz2rY5Fn9zid4269fVY7l9eXha3W3LTIDw0hId6lqTqFwQJBgZpXA-CgYciDRceBulC15QGqSgkioftLIhOA7eOMaW6PpwNw_j_GMcK5fSZ64IVD_1VP_1sG_nQlNu</recordid><startdate>20090224</startdate><enddate>20090224</enddate><creator>Biles, William E.</creator><creator>Swain, James J.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20090224</creationdate><title>Mathematical programming and the optimization of computer simulations</title><author>Biles, William E. ; Swain, James J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1014-a18dff81e7bd51d96e65bce5304016945cae6bdc522d652627cd87addb40c9b33</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Mathematical Programming</topic><topic>Optimization</topic><topic>Response Surface Methodology</topic><topic>Search Methods</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Biles, William E.</creatorcontrib><creatorcontrib>Swain, James J.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biles, William E.</au><au>Swain, James J.</au><au>Dembo, R. S.</au><au>Avriel, M.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Mathematical programming and the optimization of computer simulations</atitle><btitle>Engineering Optimization</btitle><seriestitle>Mathematical Programming Studies</seriestitle><date>2009-02-24</date><risdate>2009</risdate><spage>189</spage><epage>207</epage><pages>189-207</pages><issn>0303-3929</issn><eissn>2364-8201</eissn><isbn>9783642007996</isbn><isbn>3642007996</isbn><eisbn>3642008003</eisbn><eisbn>9783642008009</eisbn><abstract>Mathematical programming techniques can be combined with response surface experimental design methods to optimize simulated systems. A computer simulation model has controllable input variables xi, i=1,…, n and yields responses ηj, j=1,…, m. A simulation trial at a particular set of values xik, i=1,…n produces an estimate yik for the system response ηj. This paper describes several formulations of the so-called “simulation/optimization” problem, including constrained optimization and multiple-objective optimization. It also describes several procedures for obtaining a solution to this problem, including a direct search technique, a first-order response surface method, and a second-order response surface approach. Each of these techniques combines simulation, response surface methodology, and mathematical programming.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0120864</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-3929 |
ispartof | Engineering Optimization, 2009, p.189-207 |
issn | 0303-3929 2364-8201 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0120864 |
source | Springer Books |
subjects | Mathematical Programming Optimization Response Surface Methodology Search Methods Simulation |
title | Mathematical programming and the optimization of computer simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Mathematical%20programming%20and%20the%20optimization%20of%20computer%20simulations&rft.btitle=Engineering%20Optimization&rft.au=Biles,%20William%20E.&rft.date=2009-02-24&rft.spage=189&rft.epage=207&rft.pages=189-207&rft.issn=0303-3929&rft.eissn=2364-8201&rft.isbn=9783642007996&rft.isbn_list=3642007996&rft_id=info:doi/10.1007/BFb0120864&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0120864%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3642008003&rft.eisbn_list=9783642008009&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |