Split forms of z-domain algorithms for linear prediction and stability analysis

Many algorithms in linear prediction and stability analysis may be expressed by the same general two-term recursion involving two polynomials of consecutive degrees and the reciprocated polynomial of one of them. The properties of these algorithms are interpreted from a geometrical point of view tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lepschy, Antonio, Mian, Gian Antonio, Viaro, Umberto
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue
container_start_page 218
container_title
container_volume
creator Lepschy, Antonio
Mian, Gian Antonio
Viaro, Umberto
description Many algorithms in linear prediction and stability analysis may be expressed by the same general two-term recursion involving two polynomials of consecutive degrees and the reciprocated polynomial of one of them. The properties of these algorithms are interpreted from a geometrical point of view that refers to the loci described by the zeros of the polynomials in the related sequences as a characteristic real parameter varies. An analysis of all possible threeterm (split) forms involving only the symmetric and/or the antisymmetric parts of three consecutive polynomials generated by the same two-term recursion, is carried out.
doi_str_mv 10.1007/BFb0120044
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0120044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0120044</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb01200443</originalsourceid><addsrcrecordid>eNqVj71Ow0AQhJc_CQNpeIIraUx2z2df0oKI0qUgvXXGdrLh4rNu3YSn5xBI1KlGM99MMQCPhM-EaOcvqwZJIxpzAXdFadBYXJTLS8ioIsytIbr6BaWuCrTXkCFZzBeVKW5hJnJARF3qpUadweZ99DypPsSjqNCrr7wNR8eDcn4XIk_7FCeoPA-di2qMXcsfE4dUGFolk2s47U_JOX8Slge46Z2Xbvan9_C0etu-rnMZIw-7LtZNCJ9SE9Y_b-r_N8UZ1W_uB0p0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Split forms of z-domain algorithms for linear prediction and stability analysis</title><source>Springer Books</source><creator>Lepschy, Antonio ; Mian, Gian Antonio ; Viaro, Umberto</creator><contributor>Bensoussan, A. ; Lions, J. L.</contributor><creatorcontrib>Lepschy, Antonio ; Mian, Gian Antonio ; Viaro, Umberto ; Bensoussan, A. ; Lions, J. L.</creatorcontrib><description>Many algorithms in linear prediction and stability analysis may be expressed by the same general two-term recursion involving two polynomials of consecutive degrees and the reciprocated polynomial of one of them. The properties of these algorithms are interpreted from a geometrical point of view that refers to the loci described by the zeros of the polynomials in the related sequences as a characteristic real parameter varies. An analysis of all possible threeterm (split) forms involving only the symmetric and/or the antisymmetric parts of three consecutive polynomials generated by the same two-term recursion, is carried out.</description><identifier>ISSN: 0170-8643</identifier><identifier>ISBN: 3540526307</identifier><identifier>ISBN: 9783540526308</identifier><identifier>EISSN: 1610-7411</identifier><identifier>EISBN: 3540470859</identifier><identifier>EISBN: 9783540470854</identifier><identifier>DOI: 10.1007/BFb0120044</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Analysis and Optimization of Systes, 2008, p.218-227</ispartof><rights>Springer-Verlag 1990</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Control and Information Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0120044$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0120044$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Bensoussan, A.</contributor><contributor>Lions, J. L.</contributor><creatorcontrib>Lepschy, Antonio</creatorcontrib><creatorcontrib>Mian, Gian Antonio</creatorcontrib><creatorcontrib>Viaro, Umberto</creatorcontrib><title>Split forms of z-domain algorithms for linear prediction and stability analysis</title><title>Analysis and Optimization of Systes</title><description>Many algorithms in linear prediction and stability analysis may be expressed by the same general two-term recursion involving two polynomials of consecutive degrees and the reciprocated polynomial of one of them. The properties of these algorithms are interpreted from a geometrical point of view that refers to the loci described by the zeros of the polynomials in the related sequences as a characteristic real parameter varies. An analysis of all possible threeterm (split) forms involving only the symmetric and/or the antisymmetric parts of three consecutive polynomials generated by the same two-term recursion, is carried out.</description><issn>0170-8643</issn><issn>1610-7411</issn><isbn>3540526307</isbn><isbn>9783540526308</isbn><isbn>3540470859</isbn><isbn>9783540470854</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2008</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVj71Ow0AQhJc_CQNpeIIraUx2z2df0oKI0qUgvXXGdrLh4rNu3YSn5xBI1KlGM99MMQCPhM-EaOcvqwZJIxpzAXdFadBYXJTLS8ioIsytIbr6BaWuCrTXkCFZzBeVKW5hJnJARF3qpUadweZ99DypPsSjqNCrr7wNR8eDcn4XIk_7FCeoPA-di2qMXcsfE4dUGFolk2s47U_JOX8Slge46Z2Xbvan9_C0etu-rnMZIw-7LtZNCJ9SE9Y_b-r_N8UZ1W_uB0p0</recordid><startdate>20080607</startdate><enddate>20080607</enddate><creator>Lepschy, Antonio</creator><creator>Mian, Gian Antonio</creator><creator>Viaro, Umberto</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20080607</creationdate><title>Split forms of z-domain algorithms for linear prediction and stability analysis</title><author>Lepschy, Antonio ; Mian, Gian Antonio ; Viaro, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb01200443</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lepschy, Antonio</creatorcontrib><creatorcontrib>Mian, Gian Antonio</creatorcontrib><creatorcontrib>Viaro, Umberto</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepschy, Antonio</au><au>Mian, Gian Antonio</au><au>Viaro, Umberto</au><au>Bensoussan, A.</au><au>Lions, J. L.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Split forms of z-domain algorithms for linear prediction and stability analysis</atitle><btitle>Analysis and Optimization of Systes</btitle><seriestitle>Lecture Notes in Control and Information Sciences</seriestitle><date>2008-06-07</date><risdate>2008</risdate><spage>218</spage><epage>227</epage><pages>218-227</pages><issn>0170-8643</issn><eissn>1610-7411</eissn><isbn>3540526307</isbn><isbn>9783540526308</isbn><eisbn>3540470859</eisbn><eisbn>9783540470854</eisbn><abstract>Many algorithms in linear prediction and stability analysis may be expressed by the same general two-term recursion involving two polynomials of consecutive degrees and the reciprocated polynomial of one of them. The properties of these algorithms are interpreted from a geometrical point of view that refers to the loci described by the zeros of the polynomials in the related sequences as a characteristic real parameter varies. An analysis of all possible threeterm (split) forms involving only the symmetric and/or the antisymmetric parts of three consecutive polynomials generated by the same two-term recursion, is carried out.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0120044</doi></addata></record>
fulltext fulltext
identifier ISSN: 0170-8643
ispartof Analysis and Optimization of Systes, 2008, p.218-227
issn 0170-8643
1610-7411
language eng
recordid cdi_springer_books_10_1007_BFb0120044
source Springer Books
title Split forms of z-domain algorithms for linear prediction and stability analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Split%20forms%20of%20z-domain%20algorithms%20for%20linear%20prediction%20and%20stability%20analysis&rft.btitle=Analysis%20and%20Optimization%20of%20Systes&rft.au=Lepschy,%20Antonio&rft.date=2008-06-07&rft.spage=218&rft.epage=227&rft.pages=218-227&rft.issn=0170-8643&rft.eissn=1610-7411&rft.isbn=3540526307&rft.isbn_list=9783540526308&rft_id=info:doi/10.1007/BFb0120044&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0120044%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540470859&rft.eisbn_list=9783540470854&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true