The fractional quantum hall effect

The Fractional Quantum Hall Effect (FQHE) represents a very surprising recent discovery in solid state physics. It is observed in high-mobility, two-dimensional electron systems at low temperatures (≈1 K) in intense perpendicular magnetic fields (≈200 kG) when all carriers are confined to the lowest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Störmer, Horst L.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 25
container_title
container_volume
creator Störmer, Horst L.
description The Fractional Quantum Hall Effect (FQHE) represents a very surprising recent discovery in solid state physics. It is observed in high-mobility, two-dimensional electron systems at low temperatures (≈1 K) in intense perpendicular magnetic fields (≈200 kG) when all carriers are confined to the lowest Landau level. Under those exceptional conditions, and at fractional filling ν of this level, the Hall resistance is found to be quantized to ρxy = h/ie2, where i is a simple rational fraction. Concomitantly, the resistivity ρxx drops towards zero. So far this effect has been observed close to ν=1/3, 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, and 2/7 with quantum numbers i=ν quantized, in some cases, to better than 1 part in 104. The FQHE represents the unambiguous, experimental observation of a fractional quantum number. It is presently being explained as resulting from the formation of a novel incompressible quantum liquid with fractionally charged quasi-particles, and a finite gap separating the ground state from its excitations.
doi_str_mv 10.1007/BFb0107444
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0107444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0107444</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb01074443</originalsourceid><addsrcrecordid>eNqVzr0OgjAUQOHrXyIoi0_QOLmgt96WwqqR-ADsTSFFUASl-P7GxMTZ6Sxn-ABWHLccUe0OaY4clRBiBD5JgUqSEnIMHo-4CiWSmECQqJjkPsYYCWkKHgrCkCihOfjOXREjjJLIg3VWWVb2phjqrjUNe75MO7zurDJNw2xZ2mJYwqw0jbPBtwvYpKfseA7do6_bi-113nU3pznqD1D_gPTH-gaqxTlZ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>The fractional quantum hall effect</title><source>Springer Books</source><creator>Störmer, Horst L.</creator><contributor>Grosse, P.</contributor><creatorcontrib>Störmer, Horst L. ; Grosse, P.</creatorcontrib><description>The Fractional Quantum Hall Effect (FQHE) represents a very surprising recent discovery in solid state physics. It is observed in high-mobility, two-dimensional electron systems at low temperatures (≈1 K) in intense perpendicular magnetic fields (≈200 kG) when all carriers are confined to the lowest Landau level. Under those exceptional conditions, and at fractional filling ν of this level, the Hall resistance is found to be quantized to ρxy = h/ie2, where i is a simple rational fraction. Concomitantly, the resistivity ρxx drops towards zero. So far this effect has been observed close to ν=1/3, 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, and 2/7 with quantum numbers i=ν quantized, in some cases, to better than 1 part in 104. The FQHE represents the unambiguous, experimental observation of a fractional quantum number. It is presently being explained as resulting from the formation of a novel incompressible quantum liquid with fractionally charged quasi-particles, and a finite gap separating the ground state from its excitations.</description><identifier>ISSN: 0430-3393</identifier><identifier>ISBN: 9783528080303</identifier><identifier>ISBN: 3528080302</identifier><identifier>EISSN: 1617-5034</identifier><identifier>EISBN: 3540753745</identifier><identifier>EISBN: 9783540753742</identifier><identifier>DOI: 10.1007/BFb0107444</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Advances in Solid State Physics, 2007, p.25-44</ispartof><rights>Friedr. Vieweg &amp; Sohn Verlagsgesellschaft mbH 1984</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Advances in Solid State Physics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0107444$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0107444$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27904,38234,41421,42490</link.rule.ids></links><search><contributor>Grosse, P.</contributor><creatorcontrib>Störmer, Horst L.</creatorcontrib><title>The fractional quantum hall effect</title><title>Advances in Solid State Physics</title><description>The Fractional Quantum Hall Effect (FQHE) represents a very surprising recent discovery in solid state physics. It is observed in high-mobility, two-dimensional electron systems at low temperatures (≈1 K) in intense perpendicular magnetic fields (≈200 kG) when all carriers are confined to the lowest Landau level. Under those exceptional conditions, and at fractional filling ν of this level, the Hall resistance is found to be quantized to ρxy = h/ie2, where i is a simple rational fraction. Concomitantly, the resistivity ρxx drops towards zero. So far this effect has been observed close to ν=1/3, 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, and 2/7 with quantum numbers i=ν quantized, in some cases, to better than 1 part in 104. The FQHE represents the unambiguous, experimental observation of a fractional quantum number. It is presently being explained as resulting from the formation of a novel incompressible quantum liquid with fractionally charged quasi-particles, and a finite gap separating the ground state from its excitations.</description><issn>0430-3393</issn><issn>1617-5034</issn><isbn>9783528080303</isbn><isbn>3528080302</isbn><isbn>3540753745</isbn><isbn>9783540753742</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2007</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVzr0OgjAUQOHrXyIoi0_QOLmgt96WwqqR-ADsTSFFUASl-P7GxMTZ6Sxn-ABWHLccUe0OaY4clRBiBD5JgUqSEnIMHo-4CiWSmECQqJjkPsYYCWkKHgrCkCihOfjOXREjjJLIg3VWWVb2phjqrjUNe75MO7zurDJNw2xZ2mJYwqw0jbPBtwvYpKfseA7do6_bi-113nU3pznqD1D_gPTH-gaqxTlZ</recordid><startdate>20070625</startdate><enddate>20070625</enddate><creator>Störmer, Horst L.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20070625</creationdate><title>The fractional quantum hall effect</title><author>Störmer, Horst L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb01074443</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Störmer, Horst L.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Störmer, Horst L.</au><au>Grosse, P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>The fractional quantum hall effect</atitle><btitle>Advances in Solid State Physics</btitle><seriestitle>Advances in Solid State Physics</seriestitle><date>2007-06-25</date><risdate>2007</risdate><spage>25</spage><epage>44</epage><pages>25-44</pages><issn>0430-3393</issn><eissn>1617-5034</eissn><isbn>9783528080303</isbn><isbn>3528080302</isbn><eisbn>3540753745</eisbn><eisbn>9783540753742</eisbn><abstract>The Fractional Quantum Hall Effect (FQHE) represents a very surprising recent discovery in solid state physics. It is observed in high-mobility, two-dimensional electron systems at low temperatures (≈1 K) in intense perpendicular magnetic fields (≈200 kG) when all carriers are confined to the lowest Landau level. Under those exceptional conditions, and at fractional filling ν of this level, the Hall resistance is found to be quantized to ρxy = h/ie2, where i is a simple rational fraction. Concomitantly, the resistivity ρxx drops towards zero. So far this effect has been observed close to ν=1/3, 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, and 2/7 with quantum numbers i=ν quantized, in some cases, to better than 1 part in 104. The FQHE represents the unambiguous, experimental observation of a fractional quantum number. It is presently being explained as resulting from the formation of a novel incompressible quantum liquid with fractionally charged quasi-particles, and a finite gap separating the ground state from its excitations.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0107444</doi></addata></record>
fulltext fulltext
identifier ISSN: 0430-3393
ispartof Advances in Solid State Physics, 2007, p.25-44
issn 0430-3393
1617-5034
language eng
recordid cdi_springer_books_10_1007_BFb0107444
source Springer Books
title The fractional quantum hall effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=The%20fractional%20quantum%20hall%20effect&rft.btitle=Advances%20in%20Solid%20State%20Physics&rft.au=St%C3%B6rmer,%20Horst%20L.&rft.date=2007-06-25&rft.spage=25&rft.epage=44&rft.pages=25-44&rft.issn=0430-3393&rft.eissn=1617-5034&rft.isbn=9783528080303&rft.isbn_list=3528080302&rft_id=info:doi/10.1007/BFb0107444&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0107444%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540753745&rft.eisbn_list=9783540753742&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true