On periodic solutions of forced second order differential equations with a deviating argument

Using classical Leray-Schauder’s techniques and coincidence degree, we prove the existence of periodic solutions for forced second order delay-differential equations under nonuniform nonresonance conditions with respect to the spectrum of the linear ordinary-differential equation with periodicity co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iannacci, R., Nkashama, M. N.
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue
container_start_page 224
container_title
container_volume
creator Iannacci, R.
Nkashama, M. N.
description Using classical Leray-Schauder’s techniques and coincidence degree, we prove the existence of periodic solutions for forced second order delay-differential equations under nonuniform nonresonance conditions with respect to the spectrum of the linear ordinary-differential equation with periodicity conditions. Our approach allows us to derive some uniqueness result.
doi_str_mv 10.1007/BFb0074731
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0074731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0074731</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb00747313</originalsourceid><addsrcrecordid>eNqVjz9PwzAUxM0_iahk4RO8kSXUrh2nXkFU3VhYUeTGz8UQ_IqdwNfHCAQzt5x097vhGLsU_Fpw3i1vNrtiqpPiiNWmW8tWcWm04vqYVUKLrjHarE5-O9Fqo8wpq8qqbdZKqnNW5_zMi-SqVVJW7PE-wgFTIBcGyDTOU6CYgTx4SgM6yDhQdEDJYQIXvMeEcQp2BHyb7Tf9EaYnsODwPZQk7sGm_fxasAt25u2Ysf7xBbva3D3cbpt8SIXD1O-IXnIveP_1sP97KP-BfgJhL1Fw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>On periodic solutions of forced second order differential equations with a deviating argument</title><source>Springer Books</source><creator>Iannacci, R. ; Nkashama, M. N.</creator><contributor>Sleeman, Brian D. ; Jarvis, Richard J.</contributor><creatorcontrib>Iannacci, R. ; Nkashama, M. N. ; Sleeman, Brian D. ; Jarvis, Richard J.</creatorcontrib><description>Using classical Leray-Schauder’s techniques and coincidence degree, we prove the existence of periodic solutions for forced second order delay-differential equations under nonuniform nonresonance conditions with respect to the spectrum of the linear ordinary-differential equation with periodicity conditions. Our approach allows us to derive some uniqueness result.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540156949</identifier><identifier>ISBN: 3540156941</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540396406</identifier><identifier>EISBN: 3540396403</identifier><identifier>DOI: 10.1007/BFb0074731</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Ordinary and Partial Differential Equations, 2006, p.224-232</ispartof><rights>Springer-Verlag 1985</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0074731$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0074731$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Sleeman, Brian D.</contributor><contributor>Jarvis, Richard J.</contributor><creatorcontrib>Iannacci, R.</creatorcontrib><creatorcontrib>Nkashama, M. N.</creatorcontrib><title>On periodic solutions of forced second order differential equations with a deviating argument</title><title>Ordinary and Partial Differential Equations</title><description>Using classical Leray-Schauder’s techniques and coincidence degree, we prove the existence of periodic solutions for forced second order delay-differential equations under nonuniform nonresonance conditions with respect to the spectrum of the linear ordinary-differential equation with periodicity conditions. Our approach allows us to derive some uniqueness result.</description><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540156949</isbn><isbn>3540156941</isbn><isbn>9783540396406</isbn><isbn>3540396403</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVjz9PwzAUxM0_iahk4RO8kSXUrh2nXkFU3VhYUeTGz8UQ_IqdwNfHCAQzt5x097vhGLsU_Fpw3i1vNrtiqpPiiNWmW8tWcWm04vqYVUKLrjHarE5-O9Fqo8wpq8qqbdZKqnNW5_zMi-SqVVJW7PE-wgFTIBcGyDTOU6CYgTx4SgM6yDhQdEDJYQIXvMeEcQp2BHyb7Tf9EaYnsODwPZQk7sGm_fxasAt25u2Ysf7xBbva3D3cbpt8SIXD1O-IXnIveP_1sP97KP-BfgJhL1Fw</recordid><startdate>20060915</startdate><enddate>20060915</enddate><creator>Iannacci, R.</creator><creator>Nkashama, M. N.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060915</creationdate><title>On periodic solutions of forced second order differential equations with a deviating argument</title><author>Iannacci, R. ; Nkashama, M. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb00747313</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Iannacci, R.</creatorcontrib><creatorcontrib>Nkashama, M. N.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iannacci, R.</au><au>Nkashama, M. N.</au><au>Sleeman, Brian D.</au><au>Jarvis, Richard J.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>On periodic solutions of forced second order differential equations with a deviating argument</atitle><btitle>Ordinary and Partial Differential Equations</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-09-15</date><risdate>2006</risdate><spage>224</spage><epage>232</epage><pages>224-232</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540156949</isbn><isbn>3540156941</isbn><eisbn>9783540396406</eisbn><eisbn>3540396403</eisbn><abstract>Using classical Leray-Schauder’s techniques and coincidence degree, we prove the existence of periodic solutions for forced second order delay-differential equations under nonuniform nonresonance conditions with respect to the spectrum of the linear ordinary-differential equation with periodicity conditions. Our approach allows us to derive some uniqueness result.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0074731</doi></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Ordinary and Partial Differential Equations, 2006, p.224-232
issn 0075-8434
1617-9692
language eng
recordid cdi_springer_books_10_1007_BFb0074731
source Springer Books
title On periodic solutions of forced second order differential equations with a deviating argument
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=On%20periodic%20solutions%20of%20forced%20second%20order%20differential%20equations%20with%20a%20deviating%20argument&rft.btitle=Ordinary%20and%20Partial%20Differential%20Equations&rft.au=Iannacci,%20R.&rft.date=2006-09-15&rft.spage=224&rft.epage=232&rft.pages=224-232&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540156949&rft.isbn_list=3540156941&rft_id=info:doi/10.1007/BFb0074731&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0074731%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540396406&rft.eisbn_list=3540396403&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true