Use of Green's functions in the numerical solution of two-point boundary value problems

This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gallaher, L. J., Perlin, I. E.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue
container_start_page 374
container_title
container_volume
creator Gallaher, L. J.
Perlin, I. E.
description This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.
doi_str_mv 10.1007/BFb0066602
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0066602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0066602</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb00666023</originalsourceid><addsrcrecordid>eNqVj71OxDAQhM2fRARpeILtoAms48SJWxAHD8Dpyig5HDD4vJE3BvH2XCQENdNMMd8UnxAXEq8lYnNzuxoQtdZYHojcNK2qK1SNkdIcikxq2RRGm_Lod8MF1cci25_roq1UdSpy5jfcR5V121aZ2KzZAo3wEK0NlwxjCtvZUWBwAeZXCyHtbHTb3gOTT8u04PMnFRO5MMNAKTz38Qs-ep8sTJEGb3d8Lk7G3rPNf_pMXK3un-4eC56iCy82dgPRO3cSu8Wt-3NT_0C_AecNTqs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Use of Green's functions in the numerical solution of two-point boundary value problems</title><source>Springer Books</source><creator>Gallaher, L. J. ; Perlin, I. E.</creator><contributor>Bettis, Dale G.</contributor><creatorcontrib>Gallaher, L. J. ; Perlin, I. E. ; Bettis, Dale G.</creatorcontrib><description>This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.</description><identifier>ISSN: 0075-8434</identifier><identifier>ISBN: 9783540066026</identifier><identifier>ISBN: 3540066020</identifier><identifier>EISSN: 1617-9692</identifier><identifier>EISBN: 9783540379119</identifier><identifier>EISBN: 3540379118</identifier><identifier>DOI: 10.1007/BFb0066602</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Iterative Scheme ; Local Convergence Theorem ; Order Linear Ordinary Differential Equation ; Order Ordinary Differential Equation ; Relaxation Parameter</subject><ispartof>Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations, 2006, p.374-407</ispartof><rights>Springer-Verlag 1974</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Mathematics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0066602$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0066602$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Bettis, Dale G.</contributor><creatorcontrib>Gallaher, L. J.</creatorcontrib><creatorcontrib>Perlin, I. E.</creatorcontrib><title>Use of Green's functions in the numerical solution of two-point boundary value problems</title><title>Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations</title><description>This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.</description><subject>Iterative Scheme</subject><subject>Local Convergence Theorem</subject><subject>Order Linear Ordinary Differential Equation</subject><subject>Order Ordinary Differential Equation</subject><subject>Relaxation Parameter</subject><issn>0075-8434</issn><issn>1617-9692</issn><isbn>9783540066026</isbn><isbn>3540066020</isbn><isbn>9783540379119</isbn><isbn>3540379118</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVj71OxDAQhM2fRARpeILtoAms48SJWxAHD8Dpyig5HDD4vJE3BvH2XCQENdNMMd8UnxAXEq8lYnNzuxoQtdZYHojcNK2qK1SNkdIcikxq2RRGm_Lod8MF1cci25_roq1UdSpy5jfcR5V121aZ2KzZAo3wEK0NlwxjCtvZUWBwAeZXCyHtbHTb3gOTT8u04PMnFRO5MMNAKTz38Qs-ep8sTJEGb3d8Lk7G3rPNf_pMXK3un-4eC56iCy82dgPRO3cSu8Wt-3NT_0C_AecNTqs</recordid><startdate>20060827</startdate><enddate>20060827</enddate><creator>Gallaher, L. J.</creator><creator>Perlin, I. E.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060827</creationdate><title>Use of Green's functions in the numerical solution of two-point boundary value problems</title><author>Gallaher, L. J. ; Perlin, I. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb00666023</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Iterative Scheme</topic><topic>Local Convergence Theorem</topic><topic>Order Linear Ordinary Differential Equation</topic><topic>Order Ordinary Differential Equation</topic><topic>Relaxation Parameter</topic><toplevel>online_resources</toplevel><creatorcontrib>Gallaher, L. J.</creatorcontrib><creatorcontrib>Perlin, I. E.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gallaher, L. J.</au><au>Perlin, I. E.</au><au>Bettis, Dale G.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Use of Green's functions in the numerical solution of two-point boundary value problems</atitle><btitle>Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations</btitle><seriestitle>Lecture Notes in Mathematics</seriestitle><date>2006-08-27</date><risdate>2006</risdate><spage>374</spage><epage>407</epage><pages>374-407</pages><issn>0075-8434</issn><eissn>1617-9692</eissn><isbn>9783540066026</isbn><isbn>3540066020</isbn><eisbn>9783540379119</eisbn><eisbn>3540379118</eisbn><abstract>This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0066602</doi></addata></record>
fulltext fulltext
identifier ISSN: 0075-8434
ispartof Proceedings of the Conference on the Numerical Solution of Ordinary Differential Equations, 2006, p.374-407
issn 0075-8434
1617-9692
language eng
recordid cdi_springer_books_10_1007_BFb0066602
source Springer Books
subjects Iterative Scheme
Local Convergence Theorem
Order Linear Ordinary Differential Equation
Order Ordinary Differential Equation
Relaxation Parameter
title Use of Green's functions in the numerical solution of two-point boundary value problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Use%20of%20Green's%20functions%20in%20the%20numerical%20solution%20of%20two-point%20boundary%20value%20problems&rft.btitle=Proceedings%20of%20the%20Conference%20on%20the%20Numerical%20Solution%20of%20Ordinary%20Differential%20Equations&rft.au=Gallaher,%20L.%20J.&rft.date=2006-08-27&rft.spage=374&rft.epage=407&rft.pages=374-407&rft.issn=0075-8434&rft.eissn=1617-9692&rft.isbn=9783540066026&rft.isbn_list=3540066020&rft_id=info:doi/10.1007/BFb0066602&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0066602%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540379119&rft.eisbn_list=3540379118&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true