Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio

For the measure of brain activation in functional MRI many methods compute a heuristically chosen metric. The statistic of the underlying metric which is implicitly derived from the original assumption about the noise in the data, provides only an indirect way to the statistical inference of brain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ekatodramis, Dimitrios, Székely, Gábor, Gerig, Guido
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue
container_start_page 578
container_title
container_volume
creator Ekatodramis, Dimitrios
Székely, Gábor
Gerig, Guido
description For the measure of brain activation in functional MRI many methods compute a heuristically chosen metric. The statistic of the underlying metric which is implicitly derived from the original assumption about the noise in the data, provides only an indirect way to the statistical inference of brain activation. An alternative procedure is proposed by presenting a binary hypothesis-testing approach. This approach treats the problem of detecting brain activation by directly deriving a test statistic based on the probabilistic model of the noise in the data. Thereby, deterministic and parameterized models for the hemodynamic response can be considered. Results show that time series models can be detected even if they are characterized by unknown parameters, associated with the unclear nature of the mechanisms that mediate between neuronal stimulation and hemodynamic brain response. The likelihood ratio tests proposed in this paper are very efficient and robust in making a statistical inference about detected regions of brain activation. To validate the applicability of the approach a simulation environment for functional MRI is used. This environment also serves as a testbed for comparative study and systematic tests.
doi_str_mv 10.1007/BFb0056243
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0056243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0056243</sourcerecordid><originalsourceid>FETCH-LOGICAL-s224t-c2a2b8ec03c7696cdd425aa93494645d2cf0197ab23c812c61156f335bbb3fb73</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhM2fRFu48AQ-cgmsvbZTH6FQqFSEhOAc2Y5DTENcxQGpb09CkTitZkfzSTOEXDC4YgD59e3SAkjFBR6QKUoBQkuFcEgmTDGWIQp9tDeUZKjkMZkAAs90LvCUTFP6AACeaz4h2zvfe9eH9p2atqShrXzXjcp2JrTUDNa36UNsadXFT1p9tW5UpqFPLytqd7TebWNf-xRS1vv0C7Im-ZIOkeFPm7DxTahjLGk3gs7ISWWa5M__7oy8Le9fF4_Z-vlhtbhZZ4lz0WeOG27n3gG6XGnlylJwaYweqgklZMldBUznxnJ0c8bd0FuqClFaa7GyOc7I5Z6btmMf3xU2xk0qGBTjhsX_hvgDaXZhKg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio</title><source>Springer Books</source><creator>Ekatodramis, Dimitrios ; Székely, Gábor ; Gerig, Guido</creator><contributor>Delp, Scott ; Colchester, Alan ; Wells, William M.</contributor><creatorcontrib>Ekatodramis, Dimitrios ; Székely, Gábor ; Gerig, Guido ; Delp, Scott ; Colchester, Alan ; Wells, William M.</creatorcontrib><description>For the measure of brain activation in functional MRI many methods compute a heuristically chosen metric. The statistic of the underlying metric which is implicitly derived from the original assumption about the noise in the data, provides only an indirect way to the statistical inference of brain activation. An alternative procedure is proposed by presenting a binary hypothesis-testing approach. This approach treats the problem of detecting brain activation by directly deriving a test statistic based on the probabilistic model of the noise in the data. Thereby, deterministic and parameterized models for the hemodynamic response can be considered. Results show that time series models can be detected even if they are characterized by unknown parameters, associated with the unclear nature of the mechanisms that mediate between neuronal stimulation and hemodynamic brain response. The likelihood ratio tests proposed in this paper are very efficient and robust in making a statistical inference about detected regions of brain activation. To validate the applicability of the approach a simulation environment for functional MRI is used. This environment also serves as a testbed for comparative study and systematic tests.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540651365</identifier><identifier>ISBN: 9783540651369</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540495630</identifier><identifier>EISBN: 9783540495635</identifier><identifier>DOI: 10.1007/BFb0056243</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>False Alarm Probability ; Generalize Likelihood Ratio Test ; Hemodynamic Response ; Likelihood Ratio Test ; Observe Time Series</subject><ispartof>Medical Image Computing and Computer-Assisted Intervention — MICCAI’98, 1998, p.578-589</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0056243$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0056243$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>777,778,782,791,27908,38238,41425,42494</link.rule.ids></links><search><contributor>Delp, Scott</contributor><contributor>Colchester, Alan</contributor><contributor>Wells, William M.</contributor><creatorcontrib>Ekatodramis, Dimitrios</creatorcontrib><creatorcontrib>Székely, Gábor</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib><title>Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio</title><title>Medical Image Computing and Computer-Assisted Intervention — MICCAI’98</title><description>For the measure of brain activation in functional MRI many methods compute a heuristically chosen metric. The statistic of the underlying metric which is implicitly derived from the original assumption about the noise in the data, provides only an indirect way to the statistical inference of brain activation. An alternative procedure is proposed by presenting a binary hypothesis-testing approach. This approach treats the problem of detecting brain activation by directly deriving a test statistic based on the probabilistic model of the noise in the data. Thereby, deterministic and parameterized models for the hemodynamic response can be considered. Results show that time series models can be detected even if they are characterized by unknown parameters, associated with the unclear nature of the mechanisms that mediate between neuronal stimulation and hemodynamic brain response. The likelihood ratio tests proposed in this paper are very efficient and robust in making a statistical inference about detected regions of brain activation. To validate the applicability of the approach a simulation environment for functional MRI is used. This environment also serves as a testbed for comparative study and systematic tests.</description><subject>False Alarm Probability</subject><subject>Generalize Likelihood Ratio Test</subject><subject>Hemodynamic Response</subject><subject>Likelihood Ratio Test</subject><subject>Observe Time Series</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540651365</isbn><isbn>9783540651369</isbn><isbn>3540495630</isbn><isbn>9783540495635</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1998</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFkM1OwzAQhM2fRFu48AQ-cgmsvbZTH6FQqFSEhOAc2Y5DTENcxQGpb09CkTitZkfzSTOEXDC4YgD59e3SAkjFBR6QKUoBQkuFcEgmTDGWIQp9tDeUZKjkMZkAAs90LvCUTFP6AACeaz4h2zvfe9eH9p2atqShrXzXjcp2JrTUDNa36UNsadXFT1p9tW5UpqFPLytqd7TebWNf-xRS1vv0C7Im-ZIOkeFPm7DxTahjLGk3gs7ISWWa5M__7oy8Le9fF4_Z-vlhtbhZZ4lz0WeOG27n3gG6XGnlylJwaYweqgklZMldBUznxnJ0c8bd0FuqClFaa7GyOc7I5Z6btmMf3xU2xk0qGBTjhsX_hvgDaXZhKg</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Ekatodramis, Dimitrios</creator><creator>Székely, Gábor</creator><creator>Gerig, Guido</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>19980101</creationdate><title>Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio</title><author>Ekatodramis, Dimitrios ; Székely, Gábor ; Gerig, Guido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s224t-c2a2b8ec03c7696cdd425aa93494645d2cf0197ab23c812c61156f335bbb3fb73</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1998</creationdate><topic>False Alarm Probability</topic><topic>Generalize Likelihood Ratio Test</topic><topic>Hemodynamic Response</topic><topic>Likelihood Ratio Test</topic><topic>Observe Time Series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekatodramis, Dimitrios</creatorcontrib><creatorcontrib>Székely, Gábor</creatorcontrib><creatorcontrib>Gerig, Guido</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekatodramis, Dimitrios</au><au>Székely, Gábor</au><au>Gerig, Guido</au><au>Delp, Scott</au><au>Colchester, Alan</au><au>Wells, William M.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio</atitle><btitle>Medical Image Computing and Computer-Assisted Intervention — MICCAI’98</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1998-01-01</date><risdate>1998</risdate><spage>578</spage><epage>589</epage><pages>578-589</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540651365</isbn><isbn>9783540651369</isbn><eisbn>3540495630</eisbn><eisbn>9783540495635</eisbn><abstract>For the measure of brain activation in functional MRI many methods compute a heuristically chosen metric. The statistic of the underlying metric which is implicitly derived from the original assumption about the noise in the data, provides only an indirect way to the statistical inference of brain activation. An alternative procedure is proposed by presenting a binary hypothesis-testing approach. This approach treats the problem of detecting brain activation by directly deriving a test statistic based on the probabilistic model of the noise in the data. Thereby, deterministic and parameterized models for the hemodynamic response can be considered. Results show that time series models can be detected even if they are characterized by unknown parameters, associated with the unclear nature of the mechanisms that mediate between neuronal stimulation and hemodynamic brain response. The likelihood ratio tests proposed in this paper are very efficient and robust in making a statistical inference about detected regions of brain activation. To validate the applicability of the approach a simulation environment for functional MRI is used. This environment also serves as a testbed for comparative study and systematic tests.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0056243</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Medical Image Computing and Computer-Assisted Intervention — MICCAI’98, 1998, p.578-589
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_BFb0056243
source Springer Books
subjects False Alarm Probability
Generalize Likelihood Ratio Test
Hemodynamic Response
Likelihood Ratio Test
Observe Time Series
title Detecting and inferring brain activation from functional MRI by hypothesis-testing based on the likelihood ratio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Detecting%20and%20inferring%20brain%20activation%20from%20functional%20MRI%20by%20hypothesis-testing%20based%20on%20the%20likelihood%20ratio&rft.btitle=Medical%20Image%20Computing%20and%20Computer-Assisted%20Intervention%20%E2%80%94%20MICCAI%E2%80%9998&rft.au=Ekatodramis,%20Dimitrios&rft.date=1998-01-01&rft.spage=578&rft.epage=589&rft.pages=578-589&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540651365&rft.isbn_list=9783540651369&rft_id=info:doi/10.1007/BFb0056243&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0056243%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540495630&rft.eisbn_list=9783540495635&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true