Formalizing Dijkstra

We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Harrison, John
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue
container_start_page 171
container_title
container_volume
creator Harrison, John
description We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.
doi_str_mv 10.1007/BFb0055136
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0055136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0055136</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1036-53878cdba5aa008c6e2da6c141987d2930eb07f9344c1cea5661e3f83019da513</originalsourceid><addsrcrecordid>eNpFj7tOw0AQRYeXhAluEB9ASbMw49lnCSEGpEg0SW2t12vkJGDkpeLr2Qik3OYWV7pHB-CK8I4Qzf1j3SIqRayPoHTGspIonUWyx1CQJhLM0p3AxX7QeTHqFApkrIQzks-hTGmDOVwZ0q6A63qcPvxu-Bk-32-ehs02fU_-Es56v0ux_O8ZrOvFav4ilm_Pr_OHpUiErIVia2zoWq-8R7RBx6rzOpCkzO0qxxhbNL1jKQOF6JXWFLm3jOQ6nyVmcPv3m76mzI9T047jNjWEzd62OdjyL1cuP4U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Formalizing Dijkstra</title><source>Springer Books</source><creator>Harrison, John</creator><contributor>Newey, Malcolm ; Grundy, Jim</contributor><creatorcontrib>Harrison, John ; Newey, Malcolm ; Grundy, Jim</creatorcontrib><description>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540649875</identifier><identifier>ISBN: 9783540649878</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540498018</identifier><identifier>EISBN: 354049801X</identifier><identifier>DOI: 10.1007/BFb0055136</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Concrete Syntax ; Deterministic Machine ; Predicate Transformer ; Program Variable ; Weak Precondition</subject><ispartof>Theorem Proving in Higher Order Logics, 2006, p.171-188</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0055136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0055136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Newey, Malcolm</contributor><contributor>Grundy, Jim</contributor><creatorcontrib>Harrison, John</creatorcontrib><title>Formalizing Dijkstra</title><title>Theorem Proving in Higher Order Logics</title><description>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</description><subject>Concrete Syntax</subject><subject>Deterministic Machine</subject><subject>Predicate Transformer</subject><subject>Program Variable</subject><subject>Weak Precondition</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540649875</isbn><isbn>9783540649878</isbn><isbn>9783540498018</isbn><isbn>354049801X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFj7tOw0AQRYeXhAluEB9ASbMw49lnCSEGpEg0SW2t12vkJGDkpeLr2Qik3OYWV7pHB-CK8I4Qzf1j3SIqRayPoHTGspIonUWyx1CQJhLM0p3AxX7QeTHqFApkrIQzks-hTGmDOVwZ0q6A63qcPvxu-Bk-32-ehs02fU_-Es56v0ux_O8ZrOvFav4ilm_Pr_OHpUiErIVia2zoWq-8R7RBx6rzOpCkzO0qxxhbNL1jKQOF6JXWFLm3jOQ6nyVmcPv3m76mzI9T047jNjWEzd62OdjyL1cuP4U</recordid><startdate>20060527</startdate><enddate>20060527</enddate><creator>Harrison, John</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060527</creationdate><title>Formalizing Dijkstra</title><author>Harrison, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1036-53878cdba5aa008c6e2da6c141987d2930eb07f9344c1cea5661e3f83019da513</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Concrete Syntax</topic><topic>Deterministic Machine</topic><topic>Predicate Transformer</topic><topic>Program Variable</topic><topic>Weak Precondition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, John</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, John</au><au>Newey, Malcolm</au><au>Grundy, Jim</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Formalizing Dijkstra</atitle><btitle>Theorem Proving in Higher Order Logics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006-05-27</date><risdate>2006</risdate><spage>171</spage><epage>188</epage><pages>171-188</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540649875</isbn><isbn>9783540649878</isbn><eisbn>9783540498018</eisbn><eisbn>354049801X</eisbn><abstract>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0055136</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Theorem Proving in Higher Order Logics, 2006, p.171-188
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_BFb0055136
source Springer Books
subjects Concrete Syntax
Deterministic Machine
Predicate Transformer
Program Variable
Weak Precondition
title Formalizing Dijkstra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Formalizing%20Dijkstra&rft.btitle=Theorem%20Proving%20in%20Higher%20Order%20Logics&rft.au=Harrison,%20John&rft.date=2006-05-27&rft.spage=171&rft.epage=188&rft.pages=171-188&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540649875&rft.isbn_list=9783540649878&rft_id=info:doi/10.1007/BFb0055136&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0055136%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540498018&rft.eisbn_list=354049801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true