Formalizing Dijkstra
We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interes...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | |
container_start_page | 171 |
container_title | |
container_volume | |
creator | Harrison, John |
description | We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book. |
doi_str_mv | 10.1007/BFb0055136 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0055136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0055136</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1036-53878cdba5aa008c6e2da6c141987d2930eb07f9344c1cea5661e3f83019da513</originalsourceid><addsrcrecordid>eNpFj7tOw0AQRYeXhAluEB9ASbMw49lnCSEGpEg0SW2t12vkJGDkpeLr2Qik3OYWV7pHB-CK8I4Qzf1j3SIqRayPoHTGspIonUWyx1CQJhLM0p3AxX7QeTHqFApkrIQzks-hTGmDOVwZ0q6A63qcPvxu-Bk-32-ehs02fU_-Es56v0ux_O8ZrOvFav4ilm_Pr_OHpUiErIVia2zoWq-8R7RBx6rzOpCkzO0qxxhbNL1jKQOF6JXWFLm3jOQ6nyVmcPv3m76mzI9T047jNjWEzd62OdjyL1cuP4U</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Formalizing Dijkstra</title><source>Springer Books</source><creator>Harrison, John</creator><contributor>Newey, Malcolm ; Grundy, Jim</contributor><creatorcontrib>Harrison, John ; Newey, Malcolm ; Grundy, Jim</creatorcontrib><description>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540649875</identifier><identifier>ISBN: 9783540649878</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540498018</identifier><identifier>EISBN: 354049801X</identifier><identifier>DOI: 10.1007/BFb0055136</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Concrete Syntax ; Deterministic Machine ; Predicate Transformer ; Program Variable ; Weak Precondition</subject><ispartof>Theorem Proving in Higher Order Logics, 2006, p.171-188</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0055136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0055136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Newey, Malcolm</contributor><contributor>Grundy, Jim</contributor><creatorcontrib>Harrison, John</creatorcontrib><title>Formalizing Dijkstra</title><title>Theorem Proving in Higher Order Logics</title><description>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</description><subject>Concrete Syntax</subject><subject>Deterministic Machine</subject><subject>Predicate Transformer</subject><subject>Program Variable</subject><subject>Weak Precondition</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540649875</isbn><isbn>9783540649878</isbn><isbn>9783540498018</isbn><isbn>354049801X</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFj7tOw0AQRYeXhAluEB9ASbMw49lnCSEGpEg0SW2t12vkJGDkpeLr2Qik3OYWV7pHB-CK8I4Qzf1j3SIqRayPoHTGspIonUWyx1CQJhLM0p3AxX7QeTHqFApkrIQzks-hTGmDOVwZ0q6A63qcPvxu-Bk-32-ehs02fU_-Es56v0ux_O8ZrOvFav4ilm_Pr_OHpUiErIVia2zoWq-8R7RBx6rzOpCkzO0qxxhbNL1jKQOF6JXWFLm3jOQ6nyVmcPv3m76mzI9T047jNjWEzd62OdjyL1cuP4U</recordid><startdate>20060527</startdate><enddate>20060527</enddate><creator>Harrison, John</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060527</creationdate><title>Formalizing Dijkstra</title><author>Harrison, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1036-53878cdba5aa008c6e2da6c141987d2930eb07f9344c1cea5661e3f83019da513</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Concrete Syntax</topic><topic>Deterministic Machine</topic><topic>Predicate Transformer</topic><topic>Program Variable</topic><topic>Weak Precondition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harrison, John</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harrison, John</au><au>Newey, Malcolm</au><au>Grundy, Jim</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Formalizing Dijkstra</atitle><btitle>Theorem Proving in Higher Order Logics</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006-05-27</date><risdate>2006</risdate><spage>171</spage><epage>188</epage><pages>171-188</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540649875</isbn><isbn>9783540649878</isbn><eisbn>9783540498018</eisbn><eisbn>354049801X</eisbn><abstract>We present a HOL formalization of the foundational parts of Dijkstra's classic monograph “A Discipline of Programming≓. While embedding programming language semantics in theorem provers is hardly new, this particular undertaking raises several interesting questions, and perhaps makes an interesting supplement to the monograph. Moreover, the failure of HOL's first order proof tactic to prove one ‘theorem’ indicates a technical error in the book.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0055136</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Theorem Proving in Higher Order Logics, 2006, p.171-188 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0055136 |
source | Springer Books |
subjects | Concrete Syntax Deterministic Machine Predicate Transformer Program Variable Weak Precondition |
title | Formalizing Dijkstra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A37%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Formalizing%20Dijkstra&rft.btitle=Theorem%20Proving%20in%20Higher%20Order%20Logics&rft.au=Harrison,%20John&rft.date=2006-05-27&rft.spage=171&rft.epage=188&rft.pages=171-188&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540649875&rft.isbn_list=9783540649878&rft_id=info:doi/10.1007/BFb0055136&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0055136%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540498018&rft.eisbn_list=354049801X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |