Generating class fields using Shimura reciprocity

The abelian extensions of an imaginary quadratic field can theoretically be generated by the values of the modular j-function, but these values are too large to be useful in practice. We show how Shimura's reciprocity law can be applied to find small generators for these extensions, and to comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gee, Alice, Stevenhagen, Peter
Format: Buchkapitel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue
container_start_page 441
container_title
container_volume
creator Gee, Alice
Stevenhagen, Peter
description The abelian extensions of an imaginary quadratic field can theoretically be generated by the values of the modular j-function, but these values are too large to be useful in practice. We show how Shimura's reciprocity law can be applied to find small generators for these extensions, and to compute the corresponding irreducible polynomials.
doi_str_mv 10.1007/BFb0054883
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0054883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0054883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1443-b303235f62aa9bbc83dd99be656d63e6a2146a2476005c40d1e78fc47948e7583</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXL_AWHvxF-ToJfrevrdfRy22CgUP6jlsNhuN1qbstgf_vSkKvczADAwzI8QVwg0CmNv7eQOg2Fo6ElNnLCkG7RBJH4sCNWJFxO7k4LFWBk5FAQSycobpXFzk_AkA0jhZCFzEdUx-26_fy7DyOZddH1dtLnd5L7189N-75MsUQ79JQ-i3P5firPOrHKf_PBFv84fX2WO1fF48ze6WVUBmqhoCkqQ6Lb13TRMsta1zTdRKt5qi9hJ5BDZ6HBQYWozGdoGNYxuNsjQR13-5eZPGKjHVzTB85Rqh3l9RH66gX_vUSlk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Generating class fields using Shimura reciprocity</title><source>Springer Books</source><creator>Gee, Alice ; Stevenhagen, Peter</creator><contributor>Buhler, Joe P.</contributor><creatorcontrib>Gee, Alice ; Stevenhagen, Peter ; Buhler, Joe P.</creatorcontrib><description>The abelian extensions of an imaginary quadratic field can theoretically be generated by the values of the modular j-function, but these values are too large to be useful in practice. We show how Shimura's reciprocity law can be applied to find small generators for these extensions, and to compute the corresponding irreducible polynomials.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540646570</identifier><identifier>ISBN: 3540646574</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540691136</identifier><identifier>EISBN: 3540691138</identifier><identifier>DOI: 10.1007/BFb0054883</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><ispartof>Algorithmic Number Theory, 2006, p.441-453</ispartof><rights>Springer-Verlag Berlin Heidelberg 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1443-b303235f62aa9bbc83dd99be656d63e6a2146a2476005c40d1e78fc47948e7583</citedby><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0054883$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0054883$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Buhler, Joe P.</contributor><creatorcontrib>Gee, Alice</creatorcontrib><creatorcontrib>Stevenhagen, Peter</creatorcontrib><title>Generating class fields using Shimura reciprocity</title><title>Algorithmic Number Theory</title><description>The abelian extensions of an imaginary quadratic field can theoretically be generated by the values of the modular j-function, but these values are too large to be useful in practice. We show how Shimura's reciprocity law can be applied to find small generators for these extensions, and to compute the corresponding irreducible polynomials.</description><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540646570</isbn><isbn>3540646574</isbn><isbn>9783540691136</isbn><isbn>3540691138</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2006</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFUE1Lw0AUXL_AWHvxF-ToJfrevrdfRy22CgUP6jlsNhuN1qbstgf_vSkKvczADAwzI8QVwg0CmNv7eQOg2Fo6ElNnLCkG7RBJH4sCNWJFxO7k4LFWBk5FAQSycobpXFzk_AkA0jhZCFzEdUx-26_fy7DyOZddH1dtLnd5L7189N-75MsUQ79JQ-i3P5firPOrHKf_PBFv84fX2WO1fF48ze6WVUBmqhoCkqQ6Lb13TRMsta1zTdRKt5qi9hJ5BDZ6HBQYWozGdoGNYxuNsjQR13-5eZPGKjHVzTB85Rqh3l9RH66gX_vUSlk</recordid><startdate>20060524</startdate><enddate>20060524</enddate><creator>Gee, Alice</creator><creator>Stevenhagen, Peter</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20060524</creationdate><title>Generating class fields using Shimura reciprocity</title><author>Gee, Alice ; Stevenhagen, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1443-b303235f62aa9bbc83dd99be656d63e6a2146a2476005c40d1e78fc47948e7583</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gee, Alice</creatorcontrib><creatorcontrib>Stevenhagen, Peter</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gee, Alice</au><au>Stevenhagen, Peter</au><au>Buhler, Joe P.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Generating class fields using Shimura reciprocity</atitle><btitle>Algorithmic Number Theory</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2006-05-24</date><risdate>2006</risdate><spage>441</spage><epage>453</epage><pages>441-453</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540646570</isbn><isbn>3540646574</isbn><eisbn>9783540691136</eisbn><eisbn>3540691138</eisbn><abstract>The abelian extensions of an imaginary quadratic field can theoretically be generated by the values of the modular j-function, but these values are too large to be useful in practice. We show how Shimura's reciprocity law can be applied to find small generators for these extensions, and to compute the corresponding irreducible polynomials.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0054883</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Algorithmic Number Theory, 2006, p.441-453
issn 0302-9743
1611-3349
language eng
recordid cdi_springer_books_10_1007_BFb0054883
source Springer Books
title Generating class fields using Shimura reciprocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Generating%20class%20fields%20using%20Shimura%20reciprocity&rft.btitle=Algorithmic%20Number%20Theory&rft.au=Gee,%20Alice&rft.date=2006-05-24&rft.spage=441&rft.epage=453&rft.pages=441-453&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540646570&rft.isbn_list=3540646574&rft_id=info:doi/10.1007/BFb0054883&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0054883%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540691136&rft.eisbn_list=3540691138&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true