Localising facial features with matched filters
This paper describes a study of facial feature recognition using matched filter techniques. The basic aim is to develop a set of filters that can be used to characterise each of eight different facial features. These are left and right eyes, left and right-eyebrows, hairline, nose, mouth and chin. T...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | |
container_volume | |
creator | Choi, Kwang Nam Cross, Andrew D. J. Hancock, Edwin R. |
description | This paper describes a study of facial feature recognition using matched filter techniques. The basic aim is to develop a set of filters that can be used to characterise each of eight different facial features. These are left and right eyes, left and right-eyebrows, hairline, nose, mouth and chin. The matched filters are extracted from training images using inverse Fourier analysis. We provide an experimental evaluation of the method on the University of Berne face data-base. Here we explore the most effective choice of training data so that the filters can be effectively applied when the facial pose varies. We also evaluate the effectiveness of the method when facial occlusion due to spectacles is present. |
doi_str_mv | 10.1007/BFb0015974 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0015974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0015974</sourcerecordid><originalsourceid>FETCH-LOGICAL-s188t-be327819d702f2b8374c89bc7e659a467949ee0429bbd53e9b874c1627a881383</originalsourceid><addsrcrecordid>eNpFULlOxDAUNJdEWNLwBSlpwr7n5-O5hBULSJFooI7sxGEDgaA4iN8nHBLTTDGHRiPEGcIFAtj11TYAoHZW7YkT0goMK6n1vsjQIJZEyh2I3Fn-0aQxIA9FBgSyXDJ0LPKUnmEBSVRMmVhXY-OHPvVvT0Xnm94PRRf9_DHFVHz286549XOzi23R9cMcp3Qqjjo_pJj_8Uo8bq8fNrdldX9zt7msyoTMcxkiScvoWguyk4HJqoZdaGw02nllrFMuRlDShdBqii7w4kAjrWdGYlqJ89_e9D4t2-JUh3F8STVC_X1E_X8EfQEdXUlk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Localising facial features with matched filters</title><source>Springer Books</source><creator>Choi, Kwang Nam ; Cross, Andrew D. J. ; Hancock, Edwin R.</creator><contributor>Bigün, Josef ; Chollet, Gérard ; Borgefors, Gunilla</contributor><creatorcontrib>Choi, Kwang Nam ; Cross, Andrew D. J. ; Hancock, Edwin R. ; Bigün, Josef ; Chollet, Gérard ; Borgefors, Gunilla</creatorcontrib><description>This paper describes a study of facial feature recognition using matched filter techniques. The basic aim is to develop a set of filters that can be used to characterise each of eight different facial features. These are left and right eyes, left and right-eyebrows, hairline, nose, mouth and chin. The matched filters are extracted from training images using inverse Fourier analysis. We provide an experimental evaluation of the method on the University of Berne face data-base. Here we explore the most effective choice of training data so that the filters can be effectively applied when the facial pose varies. We also evaluate the effectiveness of the method when facial occlusion due to spectacles is present.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540626602</identifier><identifier>ISBN: 3540626603</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540684255</identifier><identifier>EISBN: 9783540684251</identifier><identifier>DOI: 10.1007/BFb0015974</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Face Recognition ; Facial Feature ; Localisation Error ; Matched Filter ; Training Image</subject><ispartof>Audio- and Video-based Biometric Person Authentication, 1997, p.11-20</ispartof><rights>Springer-Verlag Berlin Heidelberg 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0015974$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0015974$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Bigün, Josef</contributor><contributor>Chollet, Gérard</contributor><contributor>Borgefors, Gunilla</contributor><creatorcontrib>Choi, Kwang Nam</creatorcontrib><creatorcontrib>Cross, Andrew D. J.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib><title>Localising facial features with matched filters</title><title>Audio- and Video-based Biometric Person Authentication</title><description>This paper describes a study of facial feature recognition using matched filter techniques. The basic aim is to develop a set of filters that can be used to characterise each of eight different facial features. These are left and right eyes, left and right-eyebrows, hairline, nose, mouth and chin. The matched filters are extracted from training images using inverse Fourier analysis. We provide an experimental evaluation of the method on the University of Berne face data-base. Here we explore the most effective choice of training data so that the filters can be effectively applied when the facial pose varies. We also evaluate the effectiveness of the method when facial occlusion due to spectacles is present.</description><subject>Face Recognition</subject><subject>Facial Feature</subject><subject>Localisation Error</subject><subject>Matched Filter</subject><subject>Training Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540626602</isbn><isbn>3540626603</isbn><isbn>3540684255</isbn><isbn>9783540684251</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>1997</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFULlOxDAUNJdEWNLwBSlpwr7n5-O5hBULSJFooI7sxGEDgaA4iN8nHBLTTDGHRiPEGcIFAtj11TYAoHZW7YkT0goMK6n1vsjQIJZEyh2I3Fn-0aQxIA9FBgSyXDJ0LPKUnmEBSVRMmVhXY-OHPvVvT0Xnm94PRRf9_DHFVHz286549XOzi23R9cMcp3Qqjjo_pJj_8Uo8bq8fNrdldX9zt7msyoTMcxkiScvoWguyk4HJqoZdaGw02nllrFMuRlDShdBqii7w4kAjrWdGYlqJ89_e9D4t2-JUh3F8STVC_X1E_X8EfQEdXUlk</recordid><startdate>19970101</startdate><enddate>19970101</enddate><creator>Choi, Kwang Nam</creator><creator>Cross, Andrew D. J.</creator><creator>Hancock, Edwin R.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>19970101</creationdate><title>Localising facial features with matched filters</title><author>Choi, Kwang Nam ; Cross, Andrew D. J. ; Hancock, Edwin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s188t-be327819d702f2b8374c89bc7e659a467949ee0429bbd53e9b874c1627a881383</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Face Recognition</topic><topic>Facial Feature</topic><topic>Localisation Error</topic><topic>Matched Filter</topic><topic>Training Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Kwang Nam</creatorcontrib><creatorcontrib>Cross, Andrew D. J.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Kwang Nam</au><au>Cross, Andrew D. J.</au><au>Hancock, Edwin R.</au><au>Bigün, Josef</au><au>Chollet, Gérard</au><au>Borgefors, Gunilla</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Localising facial features with matched filters</atitle><btitle>Audio- and Video-based Biometric Person Authentication</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>1997-01-01</date><risdate>1997</risdate><spage>11</spage><epage>20</epage><pages>11-20</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540626602</isbn><isbn>3540626603</isbn><eisbn>3540684255</eisbn><eisbn>9783540684251</eisbn><abstract>This paper describes a study of facial feature recognition using matched filter techniques. The basic aim is to develop a set of filters that can be used to characterise each of eight different facial features. These are left and right eyes, left and right-eyebrows, hairline, nose, mouth and chin. The matched filters are extracted from training images using inverse Fourier analysis. We provide an experimental evaluation of the method on the University of Berne face data-base. Here we explore the most effective choice of training data so that the filters can be effectively applied when the facial pose varies. We also evaluate the effectiveness of the method when facial occlusion due to spectacles is present.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0015974</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Audio- and Video-based Biometric Person Authentication, 1997, p.11-20 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0015974 |
source | Springer Books |
subjects | Face Recognition Facial Feature Localisation Error Matched Filter Training Image |
title | Localising facial features with matched filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Localising%20facial%20features%20with%20matched%20filters&rft.btitle=Audio-%20and%20Video-based%20Biometric%20Person%20Authentication&rft.au=Choi,%20Kwang%20Nam&rft.date=1997-01-01&rft.spage=11&rft.epage=20&rft.pages=11-20&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540626602&rft.isbn_list=3540626603&rft_id=info:doi/10.1007/BFb0015974&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0015974%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540684255&rft.eisbn_list=9783540684251&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |