A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles

We deal with the inversion of a vertical seismic profile in 1D. A seismic source being located at the vicinity of the earth surface we measure the vibratory state at different depths in a well. We have to find the distribution of acoustic impedance versus depth from these measurements. The excitatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Macé, D., Lailly, P.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue
container_start_page 309
container_title
container_volume
creator Macé, D.
Lailly, P.
description We deal with the inversion of a vertical seismic profile in 1D. A seismic source being located at the vicinity of the earth surface we measure the vibratory state at different depths in a well. We have to find the distribution of acoustic impedance versus depth from these measurements. The excitation resulting from the seismic source is unknown. So we have to identify both the distributed parameter (acoustic impedance) in the 1D wave equation and the Neumann boundary condition at one edge of the domain from an observation of the vibratory state in a part of the domain. The inverse problem is very close to the inversion of seismic surface data which was studied previously [2]. We shortly recall some mathematical results (uniqueness and stability of the solution) and the solution of the optimization problem which is here of large size (∼ 1500 unknowns). The numerical examples show the efficiency of the proposed solution and the interest of such an approach for the geophysicist: the redundancy available in the data allows a reliable inversion of strongly noise corrupted data provided that the proper mathematical constraints on the solution have been implemented to ensure stability.
doi_str_mv 10.1007/BFb0006294
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0006294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0006294</sourcerecordid><originalsourceid>FETCH-springer_books_10_1007_BFb00062943</originalsourceid><addsrcrecordid>eNqVj0tPwzAQhM1LIiq58Av2yCV0N3bi5sijFT-Ae-RUGzC4ccim5e-TPgRnTjurmfmkUeqW8J4Q7fxx1SBimVfmTKWVXejCoK6Q0J6rhErCzBqii1-PdFHk5lIlSBazRWn0tUpFPiYI6pzyEhMlDyAxbEcfO4gtuA58t-NBGPohNoE30w_jOwPBM3y7HQN_bd0h7vo--PVRj_EQOnZPrEmOkx9A2MvGr_fE1geWG3XVuiCcnu5M3a2Wr08vmfSD7954qJsYP6UmrPe767_d-h_RH3ywWF4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles</title><source>Springer Books</source><creator>Macé, D. ; Lailly, P.</creator><contributor>Bensoussan, A. ; Lions, J. L.</contributor><creatorcontrib>Macé, D. ; Lailly, P. ; Bensoussan, A. ; Lions, J. L.</creatorcontrib><description>We deal with the inversion of a vertical seismic profile in 1D. A seismic source being located at the vicinity of the earth surface we measure the vibratory state at different depths in a well. We have to find the distribution of acoustic impedance versus depth from these measurements. The excitation resulting from the seismic source is unknown. So we have to identify both the distributed parameter (acoustic impedance) in the 1D wave equation and the Neumann boundary condition at one edge of the domain from an observation of the vibratory state in a part of the domain. The inverse problem is very close to the inversion of seismic surface data which was studied previously [2]. We shortly recall some mathematical results (uniqueness and stability of the solution) and the solution of the optimization problem which is here of large size (∼ 1500 unknowns). The numerical examples show the efficiency of the proposed solution and the interest of such an approach for the geophysicist: the redundancy available in the data allows a reliable inversion of strongly noise corrupted data provided that the proper mathematical constraints on the solution have been implemented to ensure stability.</description><identifier>ISSN: 0170-8643</identifier><identifier>ISBN: 9783540135524</identifier><identifier>ISBN: 3540135529</identifier><identifier>EISSN: 1610-7411</identifier><identifier>EISBN: 9783540390107</identifier><identifier>EISBN: 3540390103</identifier><identifier>DOI: 10.1007/BFb0006294</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic Impedance ; Impedance Distribution ; Inverse Problem ; Neumann Boundary Condition ; Seismic Source</subject><ispartof>Analysis and Optimization of Systems, 2005, p.309-323</ispartof><rights>Springer-Verlag 1984</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Control and Information Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0006294$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0006294$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>775,776,780,789,27902,38232,41418,42487</link.rule.ids></links><search><contributor>Bensoussan, A.</contributor><contributor>Lions, J. L.</contributor><creatorcontrib>Macé, D.</creatorcontrib><creatorcontrib>Lailly, P.</creatorcontrib><title>A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles</title><title>Analysis and Optimization of Systems</title><description>We deal with the inversion of a vertical seismic profile in 1D. A seismic source being located at the vicinity of the earth surface we measure the vibratory state at different depths in a well. We have to find the distribution of acoustic impedance versus depth from these measurements. The excitation resulting from the seismic source is unknown. So we have to identify both the distributed parameter (acoustic impedance) in the 1D wave equation and the Neumann boundary condition at one edge of the domain from an observation of the vibratory state in a part of the domain. The inverse problem is very close to the inversion of seismic surface data which was studied previously [2]. We shortly recall some mathematical results (uniqueness and stability of the solution) and the solution of the optimization problem which is here of large size (∼ 1500 unknowns). The numerical examples show the efficiency of the proposed solution and the interest of such an approach for the geophysicist: the redundancy available in the data allows a reliable inversion of strongly noise corrupted data provided that the proper mathematical constraints on the solution have been implemented to ensure stability.</description><subject>Acoustic Impedance</subject><subject>Impedance Distribution</subject><subject>Inverse Problem</subject><subject>Neumann Boundary Condition</subject><subject>Seismic Source</subject><issn>0170-8643</issn><issn>1610-7411</issn><isbn>9783540135524</isbn><isbn>3540135529</isbn><isbn>9783540390107</isbn><isbn>3540390103</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNqVj0tPwzAQhM1LIiq58Av2yCV0N3bi5sijFT-Ae-RUGzC4ccim5e-TPgRnTjurmfmkUeqW8J4Q7fxx1SBimVfmTKWVXejCoK6Q0J6rhErCzBqii1-PdFHk5lIlSBazRWn0tUpFPiYI6pzyEhMlDyAxbEcfO4gtuA58t-NBGPohNoE30w_jOwPBM3y7HQN_bd0h7vo--PVRj_EQOnZPrEmOkx9A2MvGr_fE1geWG3XVuiCcnu5M3a2Wr08vmfSD7954qJsYP6UmrPe767_d-h_RH3ywWF4</recordid><startdate>20050929</startdate><enddate>20050929</enddate><creator>Macé, D.</creator><creator>Lailly, P.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20050929</creationdate><title>A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles</title><author>Macé, D. ; Lailly, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-springer_books_10_1007_BFb00062943</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acoustic Impedance</topic><topic>Impedance Distribution</topic><topic>Inverse Problem</topic><topic>Neumann Boundary Condition</topic><topic>Seismic Source</topic><toplevel>online_resources</toplevel><creatorcontrib>Macé, D.</creatorcontrib><creatorcontrib>Lailly, P.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macé, D.</au><au>Lailly, P.</au><au>Bensoussan, A.</au><au>Lions, J. L.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles</atitle><btitle>Analysis and Optimization of Systems</btitle><seriestitle>Lecture Notes in Control and Information Sciences</seriestitle><date>2005-09-29</date><risdate>2005</risdate><spage>309</spage><epage>323</epage><pages>309-323</pages><issn>0170-8643</issn><eissn>1610-7411</eissn><isbn>9783540135524</isbn><isbn>3540135529</isbn><eisbn>9783540390107</eisbn><eisbn>3540390103</eisbn><abstract>We deal with the inversion of a vertical seismic profile in 1D. A seismic source being located at the vicinity of the earth surface we measure the vibratory state at different depths in a well. We have to find the distribution of acoustic impedance versus depth from these measurements. The excitation resulting from the seismic source is unknown. So we have to identify both the distributed parameter (acoustic impedance) in the 1D wave equation and the Neumann boundary condition at one edge of the domain from an observation of the vibratory state in a part of the domain. The inverse problem is very close to the inversion of seismic surface data which was studied previously [2]. We shortly recall some mathematical results (uniqueness and stability of the solution) and the solution of the optimization problem which is here of large size (∼ 1500 unknowns). The numerical examples show the efficiency of the proposed solution and the interest of such an approach for the geophysicist: the redundancy available in the data allows a reliable inversion of strongly noise corrupted data provided that the proper mathematical constraints on the solution have been implemented to ensure stability.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0006294</doi></addata></record>
fulltext fulltext
identifier ISSN: 0170-8643
ispartof Analysis and Optimization of Systems, 2005, p.309-323
issn 0170-8643
1610-7411
language eng
recordid cdi_springer_books_10_1007_BFb0006294
source Springer Books
subjects Acoustic Impedance
Impedance Distribution
Inverse Problem
Neumann Boundary Condition
Seismic Source
title A solution of an inverse problem in the 1 D wave equation application to the inversion of vertical seismic profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20solution%20of%20an%20inverse%20problem%20in%20the%201%20D%20wave%20equation%20application%20to%20the%20inversion%20of%20vertical%20seismic%20profiles&rft.btitle=Analysis%20and%20Optimization%20of%20Systems&rft.au=Mac%C3%A9,%20D.&rft.date=2005-09-29&rft.spage=309&rft.epage=323&rft.pages=309-323&rft.issn=0170-8643&rft.eissn=1610-7411&rft.isbn=9783540135524&rft.isbn_list=3540135529&rft_id=info:doi/10.1007/BFb0006294&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0006294%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540390107&rft.eisbn_list=3540390103&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true