Optimal stopping for two-parameter processes
A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic te...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | |
container_start_page | 239 |
container_title | |
container_volume | |
creator | Mazziotto, G. Szpirglas, J. |
description | A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed. |
doi_str_mv | 10.1007/BFb0004542 |
format | Book Chapter |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0004542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0004542</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1012-ee13a4d742954c5221eafe776cdcae785938ff3df5a8fd66d542d0196f1bc06f3</originalsourceid><addsrcrecordid>eNpFz0tLAzEUBeD4AqfVjb9gli6M3pvnzFKLVaHQja6HTHIj1daEZMC_b6WCq7M4cDgfY1cItwhg7x6WIwAorcQRm0mtQPYarThmDRoEbhXiyaFA7KXBU9YAWuCdUfKczWr9ABBaya5hN-s8bXZu29Yp5bz5em9jKu30nXh2xe1ootLmkjzVSvWCnUW3rXT5l3P2tnx8XTzz1frpZXG_4hUBBSdC6VSwSvRaeS0EkotkrfHBO7Kd7mUXowxRuy4GY8IeEgB7E3H0YKKcs-vDbs1lf4nKMKb0WQeE4dc__PvlDy2bSF0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Optimal stopping for two-parameter processes</title><source>Springer Books</source><creator>Mazziotto, G. ; Szpirglas, J.</creator><contributor>Fleming, Wendell H. ; Gorostiza, Luis G.</contributor><creatorcontrib>Mazziotto, G. ; Szpirglas, J. ; Fleming, Wendell H. ; Gorostiza, Luis G.</creatorcontrib><description>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</description><identifier>ISSN: 0170-8643</identifier><identifier>ISBN: 3540119361</identifier><identifier>ISBN: 9783540119364</identifier><identifier>EISSN: 1610-7411</identifier><identifier>EISBN: 3540395172</identifier><identifier>EISBN: 9783540395171</identifier><identifier>DOI: 10.1007/BFb0004542</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian Sheet ; Canonical Space ; Filter Probability Space ; Stochastic Game ; Variational Inequality</subject><ispartof>Advances in Filtering and Optimal Stochastic Control, 2005, p.239-245</ispartof><rights>Springer-Verlag 1982</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Control and Information Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0004542$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0004542$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Fleming, Wendell H.</contributor><contributor>Gorostiza, Luis G.</contributor><creatorcontrib>Mazziotto, G.</creatorcontrib><creatorcontrib>Szpirglas, J.</creatorcontrib><title>Optimal stopping for two-parameter processes</title><title>Advances in Filtering and Optimal Stochastic Control</title><description>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</description><subject>Brownian Sheet</subject><subject>Canonical Space</subject><subject>Filter Probability Space</subject><subject>Stochastic Game</subject><subject>Variational Inequality</subject><issn>0170-8643</issn><issn>1610-7411</issn><isbn>3540119361</isbn><isbn>9783540119364</isbn><isbn>3540395172</isbn><isbn>9783540395171</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFz0tLAzEUBeD4AqfVjb9gli6M3pvnzFKLVaHQja6HTHIj1daEZMC_b6WCq7M4cDgfY1cItwhg7x6WIwAorcQRm0mtQPYarThmDRoEbhXiyaFA7KXBU9YAWuCdUfKczWr9ABBaya5hN-s8bXZu29Yp5bz5em9jKu30nXh2xe1ootLmkjzVSvWCnUW3rXT5l3P2tnx8XTzz1frpZXG_4hUBBSdC6VSwSvRaeS0EkotkrfHBO7Kd7mUXowxRuy4GY8IeEgB7E3H0YKKcs-vDbs1lf4nKMKb0WQeE4dc__PvlDy2bSF0</recordid><startdate>20050929</startdate><enddate>20050929</enddate><creator>Mazziotto, G.</creator><creator>Szpirglas, J.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20050929</creationdate><title>Optimal stopping for two-parameter processes</title><author>Mazziotto, G. ; Szpirglas, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1012-ee13a4d742954c5221eafe776cdcae785938ff3df5a8fd66d542d0196f1bc06f3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Brownian Sheet</topic><topic>Canonical Space</topic><topic>Filter Probability Space</topic><topic>Stochastic Game</topic><topic>Variational Inequality</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazziotto, G.</creatorcontrib><creatorcontrib>Szpirglas, J.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazziotto, G.</au><au>Szpirglas, J.</au><au>Fleming, Wendell H.</au><au>Gorostiza, Luis G.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimal stopping for two-parameter processes</atitle><btitle>Advances in Filtering and Optimal Stochastic Control</btitle><seriestitle>Lecture Notes in Control and Information Sciences</seriestitle><date>2005-09-29</date><risdate>2005</risdate><spage>239</spage><epage>245</epage><pages>239-245</pages><issn>0170-8643</issn><eissn>1610-7411</eissn><isbn>3540119361</isbn><isbn>9783540119364</isbn><eisbn>3540395172</eisbn><eisbn>9783540395171</eisbn><abstract>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0004542</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-8643 |
ispartof | Advances in Filtering and Optimal Stochastic Control, 2005, p.239-245 |
issn | 0170-8643 1610-7411 |
language | eng |
recordid | cdi_springer_books_10_1007_BFb0004542 |
source | Springer Books |
subjects | Brownian Sheet Canonical Space Filter Probability Space Stochastic Game Variational Inequality |
title | Optimal stopping for two-parameter processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimal%20stopping%20for%20two-parameter%20processes&rft.btitle=Advances%20in%20Filtering%20and%20Optimal%20Stochastic%20Control&rft.au=Mazziotto,%20G.&rft.date=2005-09-29&rft.spage=239&rft.epage=245&rft.pages=239-245&rft.issn=0170-8643&rft.eissn=1610-7411&rft.isbn=3540119361&rft.isbn_list=9783540119364&rft_id=info:doi/10.1007/BFb0004542&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0004542%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540395172&rft.eisbn_list=9783540395171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |