Optimal stopping for two-parameter processes

A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mazziotto, G., Szpirglas, J.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue
container_start_page 239
container_title
container_volume
creator Mazziotto, G.
Szpirglas, J.
description A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.
doi_str_mv 10.1007/BFb0004542
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_BFb0004542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_BFb0004542</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1012-ee13a4d742954c5221eafe776cdcae785938ff3df5a8fd66d542d0196f1bc06f3</originalsourceid><addsrcrecordid>eNpFz0tLAzEUBeD4AqfVjb9gli6M3pvnzFKLVaHQja6HTHIj1daEZMC_b6WCq7M4cDgfY1cItwhg7x6WIwAorcQRm0mtQPYarThmDRoEbhXiyaFA7KXBU9YAWuCdUfKczWr9ABBaya5hN-s8bXZu29Yp5bz5em9jKu30nXh2xe1ootLmkjzVSvWCnUW3rXT5l3P2tnx8XTzz1frpZXG_4hUBBSdC6VSwSvRaeS0EkotkrfHBO7Kd7mUXowxRuy4GY8IeEgB7E3H0YKKcs-vDbs1lf4nKMKb0WQeE4dc__PvlDy2bSF0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Optimal stopping for two-parameter processes</title><source>Springer Books</source><creator>Mazziotto, G. ; Szpirglas, J.</creator><contributor>Fleming, Wendell H. ; Gorostiza, Luis G.</contributor><creatorcontrib>Mazziotto, G. ; Szpirglas, J. ; Fleming, Wendell H. ; Gorostiza, Luis G.</creatorcontrib><description>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</description><identifier>ISSN: 0170-8643</identifier><identifier>ISBN: 3540119361</identifier><identifier>ISBN: 9783540119364</identifier><identifier>EISSN: 1610-7411</identifier><identifier>EISBN: 3540395172</identifier><identifier>EISBN: 9783540395171</identifier><identifier>DOI: 10.1007/BFb0004542</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Brownian Sheet ; Canonical Space ; Filter Probability Space ; Stochastic Game ; Variational Inequality</subject><ispartof>Advances in Filtering and Optimal Stochastic Control, 2005, p.239-245</ispartof><rights>Springer-Verlag 1982</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Control and Information Sciences</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BFb0004542$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BFb0004542$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27925,38255,41442,42511</link.rule.ids></links><search><contributor>Fleming, Wendell H.</contributor><contributor>Gorostiza, Luis G.</contributor><creatorcontrib>Mazziotto, G.</creatorcontrib><creatorcontrib>Szpirglas, J.</creatorcontrib><title>Optimal stopping for two-parameter processes</title><title>Advances in Filtering and Optimal Stochastic Control</title><description>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</description><subject>Brownian Sheet</subject><subject>Canonical Space</subject><subject>Filter Probability Space</subject><subject>Stochastic Game</subject><subject>Variational Inequality</subject><issn>0170-8643</issn><issn>1610-7411</issn><isbn>3540119361</isbn><isbn>9783540119364</isbn><isbn>3540395172</isbn><isbn>9783540395171</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpFz0tLAzEUBeD4AqfVjb9gli6M3pvnzFKLVaHQja6HTHIj1daEZMC_b6WCq7M4cDgfY1cItwhg7x6WIwAorcQRm0mtQPYarThmDRoEbhXiyaFA7KXBU9YAWuCdUfKczWr9ABBaya5hN-s8bXZu29Yp5bz5em9jKu30nXh2xe1ootLmkjzVSvWCnUW3rXT5l3P2tnx8XTzz1frpZXG_4hUBBSdC6VSwSvRaeS0EkotkrfHBO7Kd7mUXowxRuy4GY8IeEgB7E3H0YKKcs-vDbs1lf4nKMKb0WQeE4dc__PvlDy2bSF0</recordid><startdate>20050929</startdate><enddate>20050929</enddate><creator>Mazziotto, G.</creator><creator>Szpirglas, J.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>20050929</creationdate><title>Optimal stopping for two-parameter processes</title><author>Mazziotto, G. ; Szpirglas, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1012-ee13a4d742954c5221eafe776cdcae785938ff3df5a8fd66d542d0196f1bc06f3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Brownian Sheet</topic><topic>Canonical Space</topic><topic>Filter Probability Space</topic><topic>Stochastic Game</topic><topic>Variational Inequality</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazziotto, G.</creatorcontrib><creatorcontrib>Szpirglas, J.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazziotto, G.</au><au>Szpirglas, J.</au><au>Fleming, Wendell H.</au><au>Gorostiza, Luis G.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Optimal stopping for two-parameter processes</atitle><btitle>Advances in Filtering and Optimal Stochastic Control</btitle><seriestitle>Lecture Notes in Control and Information Sciences</seriestitle><date>2005-09-29</date><risdate>2005</risdate><spage>239</spage><epage>245</epage><pages>239-245</pages><issn>0170-8643</issn><eissn>1610-7411</eissn><isbn>3540119361</isbn><isbn>9783540119364</isbn><eisbn>3540395172</eisbn><eisbn>9783540395171</eisbn><abstract>A formalism for the optimal stopping of two-parameter processes is developed by analogy with the classical theory. An optimality criterion is established in terms of the conditional pay-off process. The problem of optimal stopping of a process indexed by IN2 is completely solved, in probabilistic terms, by using the notion of tactics. The method consis of searching for an optimal stopping point among the maximal stopping points up to which the Snell envelope is a martingale. On IR+2 the difficulties arise from the lack of information about the behaviour of two-parameter supermartingales, and particularly the Snell envelope. The optimal stopping of a Brownian sheet is solved and we present the case of the bi-Brownian process. Associated systems of variational inequalities are proposed.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BFb0004542</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-8643
ispartof Advances in Filtering and Optimal Stochastic Control, 2005, p.239-245
issn 0170-8643
1610-7411
language eng
recordid cdi_springer_books_10_1007_BFb0004542
source Springer Books
subjects Brownian Sheet
Canonical Space
Filter Probability Space
Stochastic Game
Variational Inequality
title Optimal stopping for two-parameter processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Optimal%20stopping%20for%20two-parameter%20processes&rft.btitle=Advances%20in%20Filtering%20and%20Optimal%20Stochastic%20Control&rft.au=Mazziotto,%20G.&rft.date=2005-09-29&rft.spage=239&rft.epage=245&rft.pages=239-245&rft.issn=0170-8643&rft.eissn=1610-7411&rft.isbn=3540119361&rft.isbn_list=9783540119364&rft_id=info:doi/10.1007/BFb0004542&rft_dat=%3Cspringer%3Espringer_books_10_1007_BFb0004542%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540395172&rft.eisbn_list=9783540395171&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true