Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)

A biogeochemical model OxyDep coupled with three-dimensional hydrodynamic model GETM was used to simulate the hydrophysical and biogeochemical regimes of the meromictic Fjord Hunnbunn over the summer period. The main goal was to parameterize the oxygen depletion processes resulting in formation of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yakushev, E. V., Debolskaya, E. I., Kuznetsov, I. S., Staalstrøm, A.
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue
container_start_page 235
container_title
container_volume
creator Yakushev, E. V.
Debolskaya, E. I.
Kuznetsov, I. S.
Staalstrøm, A.
description A biogeochemical model OxyDep coupled with three-dimensional hydrodynamic model GETM was used to simulate the hydrophysical and biogeochemical regimes of the meromictic Fjord Hunnbunn over the summer period. The main goal was to parameterize the oxygen depletion processes resulting in formation of suboxic and anoxic conditions in the water column. OxyDep considered five state variables: dissolved oxygen, inorganic nutrient, dissolved organic matter, particulate organic matter, and biota. This model parameterized the main processes responsible for the changing of the water column oxygen conditions – i.e. organic matter (OM) synthesis; OM decay due to oxic mineralization and denitrification; consumption of oxygen from sulphur and metals oxidation; and the processes at the boundaries (air–water exchange and the sediment–water exchange). Results of numerical experiments have reproduced the main features of the observed structure and have allowed to reveal the main components responsible for the formation of biogeochemical structure of the meromictic water objects. With the hydrodynamical model block used it was impossible to reproduce the presence of a permanent pycnocline. We suppose that special attention must be paid when using terrain following vertical coordinates (i.e. GETM) to avoid spurious vertical mixing. The results also showed that an application of simplified biogeochemical model blocks can be used as a useful tool for analysing and forecasting oxygen and nutrient regime changes.
doi_str_mv 10.1007/698_2011_110
format Book Chapter
fullrecord <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_698_2011_110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_698_2011_110</sourcerecordid><originalsourceid>FETCH-LOGICAL-s1050-557d2d15bb7e4809edd1d637cf96bbedf32f0cafd81ed5e97dcf50b29936dfde3</originalsourceid><addsrcrecordid>eNpNUN1LwzAcjF_gnHvzD8jjJlTzS5qkeZTpnLC5F4WBD6VpftmqtRltx9x_b_0AfTgO7riDO0IugF0BY_pamSTlDCAFYAfkTKiYCw5cmkPSAwUqSlS8PPozYnbcGYnSkdFmeUoGTVPYLm-kEkL2yMs8OCzLolrR4Gm7RjrHOrwXeVvkdPIaaken26qyHejwMdS7bD-iu6Jd06yii4_9Cit6i5sS2yJU9LuMDju900bn5MRnZYODX-6T58nd03gazRb3D-ObWdQAkyySUjvuQFqrMU6YQefAKaFzb5S16LzgnuWZdwmgk2i0y71klhsjlPMORZ9c_vQ2m7obgnVqQ3hrUmDp12fp_8_EJzGsWwE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)</title><source>Springer Books</source><creator>Yakushev, E. V. ; Debolskaya, E. I. ; Kuznetsov, I. S. ; Staalstrøm, A.</creator><contributor>Yakushev, Evgeniy V.</contributor><creatorcontrib>Yakushev, E. V. ; Debolskaya, E. I. ; Kuznetsov, I. S. ; Staalstrøm, A. ; Yakushev, Evgeniy V.</creatorcontrib><description>A biogeochemical model OxyDep coupled with three-dimensional hydrodynamic model GETM was used to simulate the hydrophysical and biogeochemical regimes of the meromictic Fjord Hunnbunn over the summer period. The main goal was to parameterize the oxygen depletion processes resulting in formation of suboxic and anoxic conditions in the water column. OxyDep considered five state variables: dissolved oxygen, inorganic nutrient, dissolved organic matter, particulate organic matter, and biota. This model parameterized the main processes responsible for the changing of the water column oxygen conditions – i.e. organic matter (OM) synthesis; OM decay due to oxic mineralization and denitrification; consumption of oxygen from sulphur and metals oxidation; and the processes at the boundaries (air–water exchange and the sediment–water exchange). Results of numerical experiments have reproduced the main features of the observed structure and have allowed to reveal the main components responsible for the formation of biogeochemical structure of the meromictic water objects. With the hydrodynamical model block used it was impossible to reproduce the presence of a permanent pycnocline. We suppose that special attention must be paid when using terrain following vertical coordinates (i.e. GETM) to avoid spurious vertical mixing. The results also showed that an application of simplified biogeochemical model blocks can be used as a useful tool for analysing and forecasting oxygen and nutrient regime changes.</description><identifier>ISSN: 1867-979X</identifier><identifier>ISBN: 3642321240</identifier><identifier>ISBN: 9783642321245</identifier><identifier>EISSN: 1616-864X</identifier><identifier>EISBN: 3642321259</identifier><identifier>EISBN: 9783642321252</identifier><identifier>DOI: 10.1007/698_2011_110</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anoxia ; Hydrogen sulphide ; Hypoxia ; Modelling ; Oxygen depletion ; Stratified basin</subject><ispartof>Chemical Structure of Pelagic Redox Interfaces, 2013, p.235-251</ispartof><rights>Springer-Verlag Berlin Heidelberg 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>The Handbook of Environmental Chemistry</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/698_2011_110$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/698_2011_110$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>776,777,781,790,27906,38236,41423,42492</link.rule.ids></links><search><contributor>Yakushev, Evgeniy V.</contributor><creatorcontrib>Yakushev, E. V.</creatorcontrib><creatorcontrib>Debolskaya, E. I.</creatorcontrib><creatorcontrib>Kuznetsov, I. S.</creatorcontrib><creatorcontrib>Staalstrøm, A.</creatorcontrib><title>Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)</title><title>Chemical Structure of Pelagic Redox Interfaces</title><description>A biogeochemical model OxyDep coupled with three-dimensional hydrodynamic model GETM was used to simulate the hydrophysical and biogeochemical regimes of the meromictic Fjord Hunnbunn over the summer period. The main goal was to parameterize the oxygen depletion processes resulting in formation of suboxic and anoxic conditions in the water column. OxyDep considered five state variables: dissolved oxygen, inorganic nutrient, dissolved organic matter, particulate organic matter, and biota. This model parameterized the main processes responsible for the changing of the water column oxygen conditions – i.e. organic matter (OM) synthesis; OM decay due to oxic mineralization and denitrification; consumption of oxygen from sulphur and metals oxidation; and the processes at the boundaries (air–water exchange and the sediment–water exchange). Results of numerical experiments have reproduced the main features of the observed structure and have allowed to reveal the main components responsible for the formation of biogeochemical structure of the meromictic water objects. With the hydrodynamical model block used it was impossible to reproduce the presence of a permanent pycnocline. We suppose that special attention must be paid when using terrain following vertical coordinates (i.e. GETM) to avoid spurious vertical mixing. The results also showed that an application of simplified biogeochemical model blocks can be used as a useful tool for analysing and forecasting oxygen and nutrient regime changes.</description><subject>Anoxia</subject><subject>Hydrogen sulphide</subject><subject>Hypoxia</subject><subject>Modelling</subject><subject>Oxygen depletion</subject><subject>Stratified basin</subject><issn>1867-979X</issn><issn>1616-864X</issn><isbn>3642321240</isbn><isbn>9783642321245</isbn><isbn>3642321259</isbn><isbn>9783642321252</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2013</creationdate><recordtype>book_chapter</recordtype><sourceid/><recordid>eNpNUN1LwzAcjF_gnHvzD8jjJlTzS5qkeZTpnLC5F4WBD6VpftmqtRltx9x_b_0AfTgO7riDO0IugF0BY_pamSTlDCAFYAfkTKiYCw5cmkPSAwUqSlS8PPozYnbcGYnSkdFmeUoGTVPYLm-kEkL2yMs8OCzLolrR4Gm7RjrHOrwXeVvkdPIaaken26qyHejwMdS7bD-iu6Jd06yii4_9Cit6i5sS2yJU9LuMDju900bn5MRnZYODX-6T58nd03gazRb3D-ObWdQAkyySUjvuQFqrMU6YQefAKaFzb5S16LzgnuWZdwmgk2i0y71klhsjlPMORZ9c_vQ2m7obgnVqQ3hrUmDp12fp_8_EJzGsWwE</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Yakushev, E. V.</creator><creator>Debolskaya, E. I.</creator><creator>Kuznetsov, I. S.</creator><creator>Staalstrøm, A.</creator><general>Springer Berlin Heidelberg</general><scope/></search><sort><creationdate>2013</creationdate><title>Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)</title><author>Yakushev, E. V. ; Debolskaya, E. I. ; Kuznetsov, I. S. ; Staalstrøm, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s1050-557d2d15bb7e4809edd1d637cf96bbedf32f0cafd81ed5e97dcf50b29936dfde3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anoxia</topic><topic>Hydrogen sulphide</topic><topic>Hypoxia</topic><topic>Modelling</topic><topic>Oxygen depletion</topic><topic>Stratified basin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakushev, E. V.</creatorcontrib><creatorcontrib>Debolskaya, E. I.</creatorcontrib><creatorcontrib>Kuznetsov, I. S.</creatorcontrib><creatorcontrib>Staalstrøm, A.</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakushev, E. V.</au><au>Debolskaya, E. I.</au><au>Kuznetsov, I. S.</au><au>Staalstrøm, A.</au><au>Yakushev, Evgeniy V.</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)</atitle><btitle>Chemical Structure of Pelagic Redox Interfaces</btitle><seriestitle>The Handbook of Environmental Chemistry</seriestitle><date>2013</date><risdate>2013</risdate><spage>235</spage><epage>251</epage><pages>235-251</pages><issn>1867-979X</issn><eissn>1616-864X</eissn><isbn>3642321240</isbn><isbn>9783642321245</isbn><eisbn>3642321259</eisbn><eisbn>9783642321252</eisbn><abstract>A biogeochemical model OxyDep coupled with three-dimensional hydrodynamic model GETM was used to simulate the hydrophysical and biogeochemical regimes of the meromictic Fjord Hunnbunn over the summer period. The main goal was to parameterize the oxygen depletion processes resulting in formation of suboxic and anoxic conditions in the water column. OxyDep considered five state variables: dissolved oxygen, inorganic nutrient, dissolved organic matter, particulate organic matter, and biota. This model parameterized the main processes responsible for the changing of the water column oxygen conditions – i.e. organic matter (OM) synthesis; OM decay due to oxic mineralization and denitrification; consumption of oxygen from sulphur and metals oxidation; and the processes at the boundaries (air–water exchange and the sediment–water exchange). Results of numerical experiments have reproduced the main features of the observed structure and have allowed to reveal the main components responsible for the formation of biogeochemical structure of the meromictic water objects. With the hydrodynamical model block used it was impossible to reproduce the presence of a permanent pycnocline. We suppose that special attention must be paid when using terrain following vertical coordinates (i.e. GETM) to avoid spurious vertical mixing. The results also showed that an application of simplified biogeochemical model blocks can be used as a useful tool for analysing and forecasting oxygen and nutrient regime changes.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/698_2011_110</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1867-979X
ispartof Chemical Structure of Pelagic Redox Interfaces, 2013, p.235-251
issn 1867-979X
1616-864X
language eng
recordid cdi_springer_books_10_1007_698_2011_110
source Springer Books
subjects Anoxia
Hydrogen sulphide
Hypoxia
Modelling
Oxygen depletion
Stratified basin
title Modelling of the Meromictic Fjord Hunnbunn (Norway) with an Oxygen Depletion Model (OxyDep)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Modelling%20of%20the%20Meromictic%20Fjord%20Hunnbunn%20(Norway)%20with%20an%20Oxygen%20Depletion%20Model%20(OxyDep)&rft.btitle=Chemical%20Structure%20of%20Pelagic%20Redox%20Interfaces&rft.au=Yakushev,%20E.%20V.&rft.date=2013&rft.spage=235&rft.epage=251&rft.pages=235-251&rft.issn=1867-979X&rft.eissn=1616-864X&rft.isbn=3642321240&rft.isbn_list=9783642321245&rft_id=info:doi/10.1007/698_2011_110&rft_dat=%3Cspringer%3Espringer_books_10_1007_698_2011_110%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3642321259&rft.eisbn_list=9783642321252&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true