Organ-Specific Cancer Metabolism and Its Potential for Therapy

Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Handbook of experimental pharmacology 2016-01, Vol.233, p.321-353
Hauptverfasser: Elia, Ilaria, Schmieder, Roberta, Christen, Stefan, Fendt, Sarah-Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 353
container_issue
container_start_page 321
container_title Handbook of experimental pharmacology
container_volume 233
creator Elia, Ilaria
Schmieder, Roberta
Christen, Stefan
Fendt, Sarah-Maria
description Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.
doi_str_mv 10.1007/164_2015_10
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_springer_books_10_1007_164_2015_10</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4454260_197_321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-93663acfa5cd056a54ca8eb17564ed74a221100002bb565fd931a9a7be55c3f13</originalsourceid><addsrcrecordid>eNpdkE1v1DAQhs13l2VP3FGOcAjM2B47viChFR-ViopEOVsTx2kD2SS1s4f-e1y1lRCnObzPvKN5hHiN8B4B7Ac02ktA8giPxM7ZRil00jVg8LHYYGOoBiXpiXj5EGjzVGwALdYSQD8XG6epscpCcyJ2Of8GADSkweELcSLJYanXG_HxPF3yVP9cYhj6IVR7nkJM1fe4cjuPQz5UPHXV6ZqrH_Map3XgsernVF1cxcTLzSvxrOcxx9393IpfXz5f7L_VZ-dfT_efzuqgXLPWThmjOPRMoQMyTDpwE1u0ZHTsrGYpsfwNINuWDPWdU8iObRuJgupRbcXbu94lzdfHmFd_GHKI48hTnI_Zo7WaFMkiaive3KPH9hA7v6ThwOnGP_xcgHd3QC7RdBmTb-f5T-kAf-ve_-O-sPq_u_EWDsVE4jFc8bLGlL3WpKUp-856JVH9BZnifF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>EBC4454260_197_321</pqid></control><display><type>article</type><title>Organ-Specific Cancer Metabolism and Its Potential for Therapy</title><source>MEDLINE</source><source>Springer Books</source><creator>Elia, Ilaria ; Schmieder, Roberta ; Christen, Stefan ; Fendt, Sarah-Maria</creator><contributor>Herzig, Stephan ; Herzig, Stephan</contributor><creatorcontrib>Elia, Ilaria ; Schmieder, Roberta ; Christen, Stefan ; Fendt, Sarah-Maria ; Herzig, Stephan ; Herzig, Stephan</creatorcontrib><description>Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.</description><identifier>ISSN: 0171-2004</identifier><identifier>ISBN: 3319298046</identifier><identifier>ISBN: 9783319298047</identifier><identifier>EISSN: 1865-0325</identifier><identifier>EISBN: 9783319298061</identifier><identifier>EISBN: 3319298062</identifier><identifier>DOI: 10.1007/164_2015_10</identifier><identifier>OCLC: 945873708</identifier><identifier>PMID: 25912014</identifier><identifier>LCCallNum: RM300-666</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Breast Neoplasms - metabolism ; Cancer metabolism ; Epigenetic drivers ; Estrogen receptor-positive breast cancer ; Fatty acid metabolism ; Female ; Genetic drivers ; Gluconeogenesis ; Glucose metabolism ; Glutamine metabolism ; Humans ; Liver cancer ; Liver Neoplasms - metabolism ; Male ; Medical research ; Metabolic depletion ; Metabolic normalization ; Metabolic therapy ; Metabolism ; Microenvironment ; Mixed Warburg effect ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Organ Specificity ; Pharmacology ; Prostate cancer ; Prostatic Neoplasms - metabolism ; Reverse Warburg effect ; Serine metabolism ; Tissue-specific metabolism ; Triple-negative breast cancer ; Tumor Microenvironment ; Warburg effect</subject><ispartof>Handbook of experimental pharmacology, 2016-01, Vol.233, p.321-353</ispartof><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-93663acfa5cd056a54ca8eb17564ed74a221100002bb565fd931a9a7be55c3f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4454260-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/164_2015_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/164_2015_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>779,780,784,793,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25912014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Herzig, Stephan</contributor><contributor>Herzig, Stephan</contributor><creatorcontrib>Elia, Ilaria</creatorcontrib><creatorcontrib>Schmieder, Roberta</creatorcontrib><creatorcontrib>Christen, Stefan</creatorcontrib><creatorcontrib>Fendt, Sarah-Maria</creatorcontrib><title>Organ-Specific Cancer Metabolism and Its Potential for Therapy</title><title>Handbook of experimental pharmacology</title><addtitle>Handb Exp Pharmacol</addtitle><description>Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.</description><subject>Breast Neoplasms - metabolism</subject><subject>Cancer metabolism</subject><subject>Epigenetic drivers</subject><subject>Estrogen receptor-positive breast cancer</subject><subject>Fatty acid metabolism</subject><subject>Female</subject><subject>Genetic drivers</subject><subject>Gluconeogenesis</subject><subject>Glucose metabolism</subject><subject>Glutamine metabolism</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - metabolism</subject><subject>Male</subject><subject>Medical research</subject><subject>Metabolic depletion</subject><subject>Metabolic normalization</subject><subject>Metabolic therapy</subject><subject>Metabolism</subject><subject>Microenvironment</subject><subject>Mixed Warburg effect</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Organ Specificity</subject><subject>Pharmacology</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Reverse Warburg effect</subject><subject>Serine metabolism</subject><subject>Tissue-specific metabolism</subject><subject>Triple-negative breast cancer</subject><subject>Tumor Microenvironment</subject><subject>Warburg effect</subject><issn>0171-2004</issn><issn>1865-0325</issn><isbn>3319298046</isbn><isbn>9783319298047</isbn><isbn>9783319298061</isbn><isbn>3319298062</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1v1DAQhs13l2VP3FGOcAjM2B47viChFR-ViopEOVsTx2kD2SS1s4f-e1y1lRCnObzPvKN5hHiN8B4B7Ac02ktA8giPxM7ZRil00jVg8LHYYGOoBiXpiXj5EGjzVGwALdYSQD8XG6epscpCcyJ2Of8GADSkweELcSLJYanXG_HxPF3yVP9cYhj6IVR7nkJM1fe4cjuPQz5UPHXV6ZqrH_Map3XgsernVF1cxcTLzSvxrOcxx9393IpfXz5f7L_VZ-dfT_efzuqgXLPWThmjOPRMoQMyTDpwE1u0ZHTsrGYpsfwNINuWDPWdU8iObRuJgupRbcXbu94lzdfHmFd_GHKI48hTnI_Zo7WaFMkiaive3KPH9hA7v6ThwOnGP_xcgHd3QC7RdBmTb-f5T-kAf-ve_-O-sPq_u_EWDsVE4jFc8bLGlL3WpKUp-856JVH9BZnifF8</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Elia, Ilaria</creator><creator>Schmieder, Roberta</creator><creator>Christen, Stefan</creator><creator>Fendt, Sarah-Maria</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Organ-Specific Cancer Metabolism and Its Potential for Therapy</title><author>Elia, Ilaria ; Schmieder, Roberta ; Christen, Stefan ; Fendt, Sarah-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-93663acfa5cd056a54ca8eb17564ed74a221100002bb565fd931a9a7be55c3f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Breast Neoplasms - metabolism</topic><topic>Cancer metabolism</topic><topic>Epigenetic drivers</topic><topic>Estrogen receptor-positive breast cancer</topic><topic>Fatty acid metabolism</topic><topic>Female</topic><topic>Genetic drivers</topic><topic>Gluconeogenesis</topic><topic>Glucose metabolism</topic><topic>Glutamine metabolism</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - metabolism</topic><topic>Male</topic><topic>Medical research</topic><topic>Metabolic depletion</topic><topic>Metabolic normalization</topic><topic>Metabolic therapy</topic><topic>Metabolism</topic><topic>Microenvironment</topic><topic>Mixed Warburg effect</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Organ Specificity</topic><topic>Pharmacology</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Reverse Warburg effect</topic><topic>Serine metabolism</topic><topic>Tissue-specific metabolism</topic><topic>Triple-negative breast cancer</topic><topic>Tumor Microenvironment</topic><topic>Warburg effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elia, Ilaria</creatorcontrib><creatorcontrib>Schmieder, Roberta</creatorcontrib><creatorcontrib>Christen, Stefan</creatorcontrib><creatorcontrib>Fendt, Sarah-Maria</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Handbook of experimental pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elia, Ilaria</au><au>Schmieder, Roberta</au><au>Christen, Stefan</au><au>Fendt, Sarah-Maria</au><au>Herzig, Stephan</au><au>Herzig, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organ-Specific Cancer Metabolism and Its Potential for Therapy</atitle><jtitle>Handbook of experimental pharmacology</jtitle><addtitle>Handb Exp Pharmacol</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>233</volume><spage>321</spage><epage>353</epage><pages>321-353</pages><issn>0171-2004</issn><eissn>1865-0325</eissn><isbn>3319298046</isbn><isbn>9783319298047</isbn><eisbn>9783319298061</eisbn><eisbn>3319298062</eisbn><abstract>Targeting cancer metabolism has the potential to lead to major advances in tumor therapy. Numerous promising metabolic drug targets have been identified. Yet, it has emerged that there is no singular metabolism that defines the oncogenic state of the cell. Rather, the metabolism of cancer cells is a function of the requirements of a tumor. Hence, the tissue of origin, the (epi)genetic drivers, the aberrant signaling, and the microenvironment all together define these metabolic requirements. In this chapter we discuss in light of (epi)genetic, signaling, and environmental factors the diversity in cancer metabolism based on triple-negative and estrogen receptor-positive breast cancer, early- and late-stage prostate cancer, and liver cancer. These types of cancer all display distinct and partially opposing metabolic behaviors (e.g., Warburg versus reverse Warburg metabolism). Yet, for each of the cancers, their distinct metabolism supports the oncogenic phenotype. Finally, we will assess the therapeutic potential of metabolism based on the concepts of metabolic normalization and metabolic depletion.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><pmid>25912014</pmid><doi>10.1007/164_2015_10</doi><oclcid>945873708</oclcid><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0171-2004
ispartof Handbook of experimental pharmacology, 2016-01, Vol.233, p.321-353
issn 0171-2004
1865-0325
language eng
recordid cdi_springer_books_10_1007_164_2015_10
source MEDLINE; Springer Books
subjects Breast Neoplasms - metabolism
Cancer metabolism
Epigenetic drivers
Estrogen receptor-positive breast cancer
Fatty acid metabolism
Female
Genetic drivers
Gluconeogenesis
Glucose metabolism
Glutamine metabolism
Humans
Liver cancer
Liver Neoplasms - metabolism
Male
Medical research
Metabolic depletion
Metabolic normalization
Metabolic therapy
Metabolism
Microenvironment
Mixed Warburg effect
Neoplasms - drug therapy
Neoplasms - metabolism
Organ Specificity
Pharmacology
Prostate cancer
Prostatic Neoplasms - metabolism
Reverse Warburg effect
Serine metabolism
Tissue-specific metabolism
Triple-negative breast cancer
Tumor Microenvironment
Warburg effect
title Organ-Specific Cancer Metabolism and Its Potential for Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organ-Specific%20Cancer%20Metabolism%20and%20Its%20Potential%20for%20Therapy&rft.jtitle=Handbook%20of%20experimental%20pharmacology&rft.au=Elia,%20Ilaria&rft.date=2016-01-01&rft.volume=233&rft.spage=321&rft.epage=353&rft.pages=321-353&rft.issn=0171-2004&rft.eissn=1865-0325&rft.isbn=3319298046&rft.isbn_list=9783319298047&rft_id=info:doi/10.1007/164_2015_10&rft_dat=%3Cproquest_pubme%3EEBC4454260_197_321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319298061&rft.eisbn_list=3319298062&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4454260_197_321&rft_id=info:pmid/25912014&rfr_iscdi=true