Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath
A component of the multi-purpose moored buoy has been improved for the instantaneous detection of seafloor displacement and possible tsunami generation upon the occurrence of large earthquakes. Here, improvements to the acoustic ranging component of this buoy, which is a key element of on-demand GPS...
Gespeichert in:
Veröffentlicht in: | International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH) 2015, p.105-114 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH) |
container_volume | |
creator | Imano, Misae Kido, Motoyuki Ohta, Yusaku Fukuda, Tatsuya Ochi, Hiroshi Takahashi, Narumi Hino, Ryota |
description | A component of the multi-purpose moored buoy has been improved for the instantaneous detection of seafloor displacement and possible tsunami generation upon the occurrence of large earthquakes. Here, improvements to the acoustic ranging component of this buoy, which is a key element of on-demand GPS/acoustic (GPS/A) measurements, are demonstrated. A 1-m positioning accuracy is required in GPS/A measurements using the buoy system for the detection of the horizontal seafloor crustal deformation associated with large earthquakes. Owing to the limitation of collecting data on only a limited range of sub-surface depth from a single point located far from the optimal location, resulting from the slack mooring system, obtaining the positioning accuracy is challenging. To overcome this challenge, we developed an automatic travel-time algorithm that reliably excludes the multipath from acoustic waves. Applying the algorithm to the data from 4 months of sea trial, we revealed that the short-period repeatability of the positioning improved from 4 to 0.5 m, while the long-term repeatability improved from 8 to 4 m, which is still beyond the required accuracy of 1 m. Because acoustic ranging under sub-optimal conditions will propagate any error in the data at intermediate steps into the uncertainty of the final positioning, approaches to reduce the errors at each step must be undertaken, such as determination of the pre-defined geometry of seafloor transponders more precisely. |
doi_str_mv | 10.1007/1345_2015_192 |
format | Article |
fullrecord | <record><control><sourceid>springer</sourceid><recordid>TN_cdi_springer_books_10_1007_1345_2015_192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>springer_books_10_1007_1345_2015_192</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2392-3548ac05bbafd46485fa66afcbebcb3a30158232f0b7e31dabbdfe12d117faf83</originalsourceid><addsrcrecordid>eNpVkFtLwzAYhuMJnHOX3ude4nJomuZyDp2DDYfbrkuSJq7aLqVpB_0P_mg7D4hX3wsf78PLA8ANwXcEYzEmLOIpxYSnRNITcMUYkUyKOMGnYECJFEgyLs_ASIrk9yfoORjgPiLJE34JRiG8YYyJiImI8AB8zMuq9gdb2n0D8z1sdhZOjGlrZTroHXyxqkCbvLRwtlqPJ8a3ockNXFoV2vqrFeA25PtXqOCyLZocrdq68sHCpfe1zeB96zu47kJjS6i7nlf6gyqO6D_YsVepZncNLpwqgh393CHYPj5spk9o8TybTycLpCiTFDEeJcpgrrVyWRRHCXcqjpUz2mqjmWK9ooQy6rAWlpFMaZ05S2hGiHDKJWwIbr-5oar76bZOtffvISU4PYpO_4lmn5gubic</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath</title><source>Springer Books</source><creator>Imano, Misae ; Kido, Motoyuki ; Ohta, Yusaku ; Fukuda, Tatsuya ; Ochi, Hiroshi ; Takahashi, Narumi ; Hino, Ryota</creator><contributor>Hashimoto, Manabu</contributor><creatorcontrib>Imano, Misae ; Kido, Motoyuki ; Ohta, Yusaku ; Fukuda, Tatsuya ; Ochi, Hiroshi ; Takahashi, Narumi ; Hino, Ryota ; Hashimoto, Manabu</creatorcontrib><description>A component of the multi-purpose moored buoy has been improved for the instantaneous detection of seafloor displacement and possible tsunami generation upon the occurrence of large earthquakes. Here, improvements to the acoustic ranging component of this buoy, which is a key element of on-demand GPS/acoustic (GPS/A) measurements, are demonstrated. A 1-m positioning accuracy is required in GPS/A measurements using the buoy system for the detection of the horizontal seafloor crustal deformation associated with large earthquakes. Owing to the limitation of collecting data on only a limited range of sub-surface depth from a single point located far from the optimal location, resulting from the slack mooring system, obtaining the positioning accuracy is challenging. To overcome this challenge, we developed an automatic travel-time algorithm that reliably excludes the multipath from acoustic waves. Applying the algorithm to the data from 4 months of sea trial, we revealed that the short-period repeatability of the positioning improved from 4 to 0.5 m, while the long-term repeatability improved from 8 to 4 m, which is still beyond the required accuracy of 1 m. Because acoustic ranging under sub-optimal conditions will propagate any error in the data at intermediate steps into the uncertainty of the final positioning, approaches to reduce the errors at each step must be undertaken, such as determination of the pre-defined geometry of seafloor transponders more precisely.</description><identifier>ISSN: 0939-9585</identifier><identifier>ISBN: 9783319397672</identifier><identifier>ISBN: 3319397672</identifier><identifier>EISSN: 2197-9359</identifier><identifier>EISBN: 3319397680</identifier><identifier>EISBN: 9783319397689</identifier><identifier>DOI: 10.1007/1345_2015_192</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Automated algorithm ; GPS/Acoustic measurements ; Moored buoy ; Positioning accuracy ; Seafloor crustal displacement</subject><ispartof>International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), 2015, p.105-114</ispartof><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2392-3548ac05bbafd46485fa66afcbebcb3a30158232f0b7e31dabbdfe12d117faf83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/1345_2015_192$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/1345_2015_192$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>780,781,785,794,27930,38260,41447,42516</link.rule.ids></links><search><contributor>Hashimoto, Manabu</contributor><creatorcontrib>Imano, Misae</creatorcontrib><creatorcontrib>Kido, Motoyuki</creatorcontrib><creatorcontrib>Ohta, Yusaku</creatorcontrib><creatorcontrib>Fukuda, Tatsuya</creatorcontrib><creatorcontrib>Ochi, Hiroshi</creatorcontrib><creatorcontrib>Takahashi, Narumi</creatorcontrib><creatorcontrib>Hino, Ryota</creatorcontrib><title>Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath</title><title>International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)</title><description>A component of the multi-purpose moored buoy has been improved for the instantaneous detection of seafloor displacement and possible tsunami generation upon the occurrence of large earthquakes. Here, improvements to the acoustic ranging component of this buoy, which is a key element of on-demand GPS/acoustic (GPS/A) measurements, are demonstrated. A 1-m positioning accuracy is required in GPS/A measurements using the buoy system for the detection of the horizontal seafloor crustal deformation associated with large earthquakes. Owing to the limitation of collecting data on only a limited range of sub-surface depth from a single point located far from the optimal location, resulting from the slack mooring system, obtaining the positioning accuracy is challenging. To overcome this challenge, we developed an automatic travel-time algorithm that reliably excludes the multipath from acoustic waves. Applying the algorithm to the data from 4 months of sea trial, we revealed that the short-period repeatability of the positioning improved from 4 to 0.5 m, while the long-term repeatability improved from 8 to 4 m, which is still beyond the required accuracy of 1 m. Because acoustic ranging under sub-optimal conditions will propagate any error in the data at intermediate steps into the uncertainty of the final positioning, approaches to reduce the errors at each step must be undertaken, such as determination of the pre-defined geometry of seafloor transponders more precisely.</description><subject>Automated algorithm</subject><subject>GPS/Acoustic measurements</subject><subject>Moored buoy</subject><subject>Positioning accuracy</subject><subject>Seafloor crustal displacement</subject><issn>0939-9585</issn><issn>2197-9359</issn><isbn>9783319397672</isbn><isbn>3319397672</isbn><isbn>3319397680</isbn><isbn>9783319397689</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkFtLwzAYhuMJnHOX3ude4nJomuZyDp2DDYfbrkuSJq7aLqVpB_0P_mg7D4hX3wsf78PLA8ANwXcEYzEmLOIpxYSnRNITcMUYkUyKOMGnYECJFEgyLs_ASIrk9yfoORjgPiLJE34JRiG8YYyJiImI8AB8zMuq9gdb2n0D8z1sdhZOjGlrZTroHXyxqkCbvLRwtlqPJ8a3ockNXFoV2vqrFeA25PtXqOCyLZocrdq68sHCpfe1zeB96zu47kJjS6i7nlf6gyqO6D_YsVepZncNLpwqgh393CHYPj5spk9o8TybTycLpCiTFDEeJcpgrrVyWRRHCXcqjpUz2mqjmWK9ooQy6rAWlpFMaZ05S2hGiHDKJWwIbr-5oar76bZOtffvISU4PYpO_4lmn5gubic</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Imano, Misae</creator><creator>Kido, Motoyuki</creator><creator>Ohta, Yusaku</creator><creator>Fukuda, Tatsuya</creator><creator>Ochi, Hiroshi</creator><creator>Takahashi, Narumi</creator><creator>Hino, Ryota</creator><general>Springer International Publishing</general><scope/></search><sort><creationdate>2015</creationdate><title>Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath</title><author>Imano, Misae ; Kido, Motoyuki ; Ohta, Yusaku ; Fukuda, Tatsuya ; Ochi, Hiroshi ; Takahashi, Narumi ; Hino, Ryota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2392-3548ac05bbafd46485fa66afcbebcb3a30158232f0b7e31dabbdfe12d117faf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automated algorithm</topic><topic>GPS/Acoustic measurements</topic><topic>Moored buoy</topic><topic>Positioning accuracy</topic><topic>Seafloor crustal displacement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imano, Misae</creatorcontrib><creatorcontrib>Kido, Motoyuki</creatorcontrib><creatorcontrib>Ohta, Yusaku</creatorcontrib><creatorcontrib>Fukuda, Tatsuya</creatorcontrib><creatorcontrib>Ochi, Hiroshi</creatorcontrib><creatorcontrib>Takahashi, Narumi</creatorcontrib><creatorcontrib>Hino, Ryota</creatorcontrib><jtitle>International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imano, Misae</au><au>Kido, Motoyuki</au><au>Ohta, Yusaku</au><au>Fukuda, Tatsuya</au><au>Ochi, Hiroshi</au><au>Takahashi, Narumi</au><au>Hino, Ryota</au><au>Hashimoto, Manabu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath</atitle><jtitle>International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH)</jtitle><date>2015</date><risdate>2015</risdate><spage>105</spage><epage>114</epage><pages>105-114</pages><issn>0939-9585</issn><eissn>2197-9359</eissn><isbn>9783319397672</isbn><isbn>3319397672</isbn><eisbn>3319397680</eisbn><eisbn>9783319397689</eisbn><abstract>A component of the multi-purpose moored buoy has been improved for the instantaneous detection of seafloor displacement and possible tsunami generation upon the occurrence of large earthquakes. Here, improvements to the acoustic ranging component of this buoy, which is a key element of on-demand GPS/acoustic (GPS/A) measurements, are demonstrated. A 1-m positioning accuracy is required in GPS/A measurements using the buoy system for the detection of the horizontal seafloor crustal deformation associated with large earthquakes. Owing to the limitation of collecting data on only a limited range of sub-surface depth from a single point located far from the optimal location, resulting from the slack mooring system, obtaining the positioning accuracy is challenging. To overcome this challenge, we developed an automatic travel-time algorithm that reliably excludes the multipath from acoustic waves. Applying the algorithm to the data from 4 months of sea trial, we revealed that the short-period repeatability of the positioning improved from 4 to 0.5 m, while the long-term repeatability improved from 8 to 4 m, which is still beyond the required accuracy of 1 m. Because acoustic ranging under sub-optimal conditions will propagate any error in the data at intermediate steps into the uncertainty of the final positioning, approaches to reduce the errors at each step must be undertaken, such as determination of the pre-defined geometry of seafloor transponders more precisely.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/1345_2015_192</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-9585 |
ispartof | International Symposium on Geodesy for Earthquake and Natural Hazards (GENAH), 2015, p.105-114 |
issn | 0939-9585 2197-9359 |
language | eng |
recordid | cdi_springer_books_10_1007_1345_2015_192 |
source | Springer Books |
subjects | Automated algorithm GPS/Acoustic measurements Moored buoy Positioning accuracy Seafloor crustal displacement |
title | Improvement in the Accuracy of Real-Time GPS/Acoustic Measurements Using a Multi-Purpose Moored Buoy System by Removal of Acoustic Multipath |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T05%3A15%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-springer&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20in%20the%20Accuracy%20of%20Real-Time%20GPS/Acoustic%20Measurements%20Using%20a%20Multi-Purpose%20Moored%20Buoy%20System%20by%20Removal%20of%20Acoustic%20Multipath&rft.jtitle=International%20Symposium%20on%20Geodesy%20for%20Earthquake%20and%20Natural%20Hazards%20(GENAH)&rft.au=Imano,%20Misae&rft.date=2015&rft.spage=105&rft.epage=114&rft.pages=105-114&rft.issn=0939-9585&rft.eissn=2197-9359&rft.isbn=9783319397672&rft.isbn_list=3319397672&rft_id=info:doi/10.1007/1345_2015_192&rft_dat=%3Cspringer%3Espringer_books_10_1007_1345_2015_192%3C/springer%3E%3Curl%3E%3C/url%3E&rft.eisbn=3319397680&rft.eisbn_list=9783319397689&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |